前言

Cassandra自动巡检作为企业级NoSQL数据库运维的核心能力之一,直接影响着数据存储的稳定性和查询性能。通过智能的集群监控策略,完善的性能优化机制,能够及时发现集群异常,预防数据丢失,保障企业级应用的高可用性。本文从集群监控设计到性能优化,从基础原理到企业级实践,系统梳理Cassandra自动巡检的完整解决方案。

一、Cassandra自动巡检架构设计

1.1 巡检系统整体架构

1.2 巡检核心组件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
/**
* Cassandra自动巡检核心组件
*/
@Component
public class CassandraInspectionEngine {

@Autowired
private ClusterMonitorService clusterMonitorService;

@Autowired
private NodeHealthChecker nodeHealthChecker;

@Autowired
private DataConsistencyChecker dataConsistencyChecker;

@Autowired
private PerformanceMonitorService performanceMonitorService;

@Autowired
private StorageMonitorService storageMonitorService;

@Autowired
private AlertService alertService;

/**
* 启动Cassandra巡检引擎
*/
public void startInspectionEngine() {
try {
// 1. 初始化集群连接
initializeClusterConnections();

// 2. 启动集群监控
clusterMonitorService.startMonitoring();

// 3. 启动节点健康检查
nodeHealthChecker.startHealthCheck();

// 4. 启动数据一致性检查
dataConsistencyChecker.startConsistencyCheck();

// 5. 启动性能监控
performanceMonitorService.startPerformanceMonitoring();

// 6. 启动存储监控
storageMonitorService.startStorageMonitoring();

log.info("Cassandra巡检引擎启动成功");

} catch (Exception e) {
log.error("Cassandra巡检引擎启动失败", e);
throw new InspectionEngineException("巡检引擎启动失败", e);
}
}

/**
* 停止Cassandra巡检引擎
*/
public void stopInspectionEngine() {
try {
// 1. 停止存储监控
storageMonitorService.stopStorageMonitoring();

// 2. 停止性能监控
performanceMonitorService.stopPerformanceMonitoring();

// 3. 停止数据一致性检查
dataConsistencyChecker.stopConsistencyCheck();

// 4. 停止节点健康检查
nodeHealthChecker.stopHealthCheck();

// 5. 停止集群监控
clusterMonitorService.stopMonitoring();

log.info("Cassandra巡检引擎停止成功");

} catch (Exception e) {
log.error("Cassandra巡检引擎停止失败", e);
}
}

/**
* 初始化集群连接
*/
private void initializeClusterConnections() {
// 实现集群连接初始化逻辑
log.info("初始化Cassandra集群连接");
}
}

二、集群监控与节点健康检查

2.1 集群监控服务

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/**
* Cassandra集群监控服务
*/
@Service
public class ClusterMonitorService {

@Autowired
private CassandraClusterManager clusterManager;

@Autowired
private ClusterMetricsCollector metricsCollector;

@Autowired
private ClusterHealthAnalyzer healthAnalyzer;

private final ScheduledExecutorService monitorScheduler;

public ClusterMonitorService() {
this.monitorScheduler = Executors.newScheduledThreadPool(5);
}

/**
* 启动集群监控
*/
public void startMonitoring() {
// 启动定期监控任务
monitorScheduler.scheduleAtFixedRate(
this::monitorCluster,
0,
30,
TimeUnit.SECONDS
);

log.info("Cassandra集群监控启动成功");
}

/**
* 停止集群监控
*/
public void stopMonitoring() {
try {
monitorScheduler.shutdown();
if (!monitorScheduler.awaitTermination(30, TimeUnit.SECONDS)) {
monitorScheduler.shutdownNow();
}

log.info("Cassandra集群监控停止成功");

} catch (Exception e) {
log.error("Cassandra集群监控停止失败", e);
}
}

/**
* 监控集群
*/
private void monitorCluster() {
try {
// 1. 获取集群信息
ClusterInfo clusterInfo = clusterManager.getClusterInfo();

// 2. 收集集群指标
ClusterMetrics metrics = metricsCollector.collectMetrics(clusterInfo);

// 3. 分析集群健康状态
ClusterHealthStatus healthStatus = healthAnalyzer.analyzeHealth(metrics);

// 4. 检查集群状态
checkClusterStatus(healthStatus);

// 5. 记录监控结果
recordMonitoringResult(metrics, healthStatus);

} catch (Exception e) {
log.error("集群监控失败", e);
}
}

/**
* 检查集群状态
*/
private void checkClusterStatus(ClusterHealthStatus healthStatus) {
// 检查集群是否健康
if (!healthStatus.isHealthy()) {
// 发送告警
sendClusterAlert(healthStatus);
}

// 检查节点状态
for (NodeHealthStatus nodeStatus : healthStatus.getNodeStatuses()) {
if (!nodeStatus.isHealthy()) {
sendNodeAlert(nodeStatus);
}
}

// 检查数据一致性
if (healthStatus.getConsistencyStatus() != ConsistencyStatus.CONSISTENT) {
sendConsistencyAlert(healthStatus.getConsistencyStatus());
}
}

/**
* 发送集群告警
*/
private void sendClusterAlert(ClusterHealthStatus healthStatus) {
ClusterAlert alert = new ClusterAlert();
alert.setAlertType(AlertType.CLUSTER_UNHEALTHY);
alert.setSeverity(Severity.HIGH);
alert.setMessage("Cassandra集群状态异常");
alert.setHealthStatus(healthStatus);
alert.setTimestamp(System.currentTimeMillis());

// 发送告警
alertService.sendAlert(alert);
}

/**
* 发送节点告警
*/
private void sendNodeAlert(NodeHealthStatus nodeStatus) {
NodeAlert alert = new NodeAlert();
alert.setAlertType(AlertType.NODE_UNHEALTHY);
alert.setSeverity(Severity.MEDIUM);
alert.setMessage("Cassandra节点状态异常: " + nodeStatus.getNodeAddress());
alert.setNodeStatus(nodeStatus);
alert.setTimestamp(System.currentTimeMillis());

// 发送告警
alertService.sendAlert(alert);
}

/**
* 发送一致性告警
*/
private void sendConsistencyAlert(ConsistencyStatus consistencyStatus) {
ConsistencyAlert alert = new ConsistencyAlert();
alert.setAlertType(AlertType.DATA_INCONSISTENT);
alert.setSeverity(Severity.CRITICAL);
alert.setMessage("数据一致性异常: " + consistencyStatus);
alert.setConsistencyStatus(consistencyStatus);
alert.setTimestamp(System.currentTimeMillis());

// 发送告警
alertService.sendAlert(alert);
}

/**
* 记录监控结果
*/
private void recordMonitoringResult(ClusterMetrics metrics, ClusterHealthStatus healthStatus) {
MonitoringResult result = new MonitoringResult();
result.setTimestamp(System.currentTimeMillis());
result.setMetrics(metrics);
result.setHealthStatus(healthStatus);

// 存储监控结果
// monitoringResultStorage.store(result);
}
}

2.2 节点健康检查器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/**
* Cassandra节点健康检查器
*/
@Service
public class NodeHealthChecker {

@Autowired
private CassandraNodeManager nodeManager;

@Autowired
private NodeMetricsCollector nodeMetricsCollector;

@Autowired
private NodeHealthAnalyzer healthAnalyzer;

private final ScheduledExecutorService healthCheckScheduler;

public NodeHealthChecker() {
this.healthCheckScheduler = Executors.newScheduledThreadPool(10);
}

/**
* 启动节点健康检查
*/
public void startHealthCheck() {
// 启动定期健康检查任务
healthCheckScheduler.scheduleAtFixedRate(
this::checkNodeHealth,
0,
60,
TimeUnit.SECONDS
);

log.info("Cassandra节点健康检查启动成功");
}

/**
* 停止节点健康检查
*/
public void stopHealthCheck() {
try {
healthCheckScheduler.shutdown();
if (!healthCheckScheduler.awaitTermination(30, TimeUnit.SECONDS)) {
healthCheckScheduler.shutdownNow();
}

log.info("Cassandra节点健康检查停止成功");

} catch (Exception e) {
log.error("Cassandra节点健康检查停止失败", e);
}
}

/**
* 检查节点健康状态
*/
private void checkNodeHealth() {
try {
// 1. 获取所有节点
List<CassandraNode> nodes = nodeManager.getAllNodes();

// 2. 检查每个节点
for (CassandraNode node : nodes) {
checkSingleNodeHealth(node);
}

} catch (Exception e) {
log.error("节点健康检查失败", e);
}
}

/**
* 检查单个节点健康状态
*/
private void checkSingleNodeHealth(CassandraNode node) {
try {
// 1. 收集节点指标
NodeMetrics metrics = nodeMetricsCollector.collectMetrics(node);

// 2. 分析节点健康状态
NodeHealthStatus healthStatus = healthAnalyzer.analyzeHealth(node, metrics);

// 3. 检查节点状态
if (!healthStatus.isHealthy()) {
handleUnhealthyNode(node, healthStatus);
}

// 4. 记录健康检查结果
recordHealthCheckResult(node, metrics, healthStatus);

} catch (Exception e) {
log.error("节点健康检查失败: {}", node.getAddress(), e);
}
}

/**
* 处理不健康节点
*/
private void handleUnhealthyNode(CassandraNode node, NodeHealthStatus healthStatus) {
// 1. 发送节点告警
sendNodeHealthAlert(node, healthStatus);

// 2. 尝试自动修复
if (healthStatus.isAutoRepairable()) {
attemptAutoRepair(node, healthStatus);
}

// 3. 记录节点问题
recordNodeIssue(node, healthStatus);
}

/**
* 发送节点健康告警
*/
private void sendNodeHealthAlert(CassandraNode node, NodeHealthStatus healthStatus) {
NodeHealthAlert alert = new NodeHealthAlert();
alert.setAlertType(AlertType.NODE_UNHEALTHY);
alert.setSeverity(healthStatus.getSeverity());
alert.setMessage("节点健康状态异常: " + node.getAddress());
alert.setNode(node);
alert.setHealthStatus(healthStatus);
alert.setTimestamp(System.currentTimeMillis());

// 发送告警
alertService.sendAlert(alert);
}

/**
* 尝试自动修复
*/
private void attemptAutoRepair(CassandraNode node, NodeHealthStatus healthStatus) {
try {
log.info("尝试自动修复节点: {}", node.getAddress());

// 根据问题类型选择修复策略
switch (healthStatus.getIssueType()) {
case CONNECTION_ISSUE:
repairConnectionIssue(node);
break;
case MEMORY_ISSUE:
repairMemoryIssue(node);
break;
case DISK_ISSUE:
repairDiskIssue(node);
break;
case GC_ISSUE:
repairGCIssue(node);
break;
default:
log.warn("无法自动修复的问题类型: {}", healthStatus.getIssueType());
}

} catch (Exception e) {
log.error("自动修复失败: {}", node.getAddress(), e);
}
}

/**
* 修复连接问题
*/
private void repairConnectionIssue(CassandraNode node) {
try {
// 重启节点连接
nodeManager.restartNodeConnection(node);
log.info("节点连接修复成功: {}", node.getAddress());

} catch (Exception e) {
log.error("节点连接修复失败: {}", node.getAddress(), e);
}
}

/**
* 修复内存问题
*/
private void repairMemoryIssue(CassandraNode node) {
try {
// 触发GC
nodeManager.triggerGC(node);
log.info("节点内存修复成功: {}", node.getAddress());

} catch (Exception e) {
log.error("节点内存修复失败: {}", node.getAddress(), e);
}
}

/**
* 修复磁盘问题
*/
private void repairDiskIssue(CassandraNode node) {
try {
// 清理临时文件
nodeManager.cleanupTempFiles(node);
log.info("节点磁盘修复成功: {}", node.getAddress());

} catch (Exception e) {
log.error("节点磁盘修复失败: {}", node.getAddress(), e);
}
}

/**
* 修复GC问题
*/
private void repairGCIssue(CassandraNode node) {
try {
// 调整GC参数
nodeManager.adjustGCParameters(node);
log.info("节点GC修复成功: {}", node.getAddress());

} catch (Exception e) {
log.error("节点GC修复失败: {}", node.getAddress(), e);
}
}

/**
* 记录健康检查结果
*/
private void recordHealthCheckResult(CassandraNode node, NodeMetrics metrics, NodeHealthStatus healthStatus) {
HealthCheckResult result = new HealthCheckResult();
result.setNodeAddress(node.getAddress());
result.setTimestamp(System.currentTimeMillis());
result.setMetrics(metrics);
result.setHealthStatus(healthStatus);

// 存储健康检查结果
// healthCheckResultStorage.store(result);
}
}

2.3 数据一致性检查器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
/**
* Cassandra数据一致性检查器
*/
@Service
public class DataConsistencyChecker {

@Autowired
private CassandraDataManager dataManager;

@Autowired
private ConsistencyAnalyzer consistencyAnalyzer;

@Autowired
private RepairService repairService;

private final ScheduledExecutorService consistencyCheckScheduler;

public DataConsistencyChecker() {
this.consistencyCheckScheduler = Executors.newScheduledThreadPool(3);
}

/**
* 启动数据一致性检查
*/
public void startConsistencyCheck() {
// 启动定期一致性检查任务
consistencyCheckScheduler.scheduleAtFixedRate(
this::checkDataConsistency,
0,
300, // 5分钟
TimeUnit.SECONDS
);

log.info("Cassandra数据一致性检查启动成功");
}

/**
* 停止数据一致性检查
*/
public void stopConsistencyCheck() {
try {
consistencyCheckScheduler.shutdown();
if (!consistencyCheckScheduler.awaitTermination(30, TimeUnit.SECONDS)) {
consistencyCheckScheduler.shutdownNow();
}

log.info("Cassandra数据一致性检查停止成功");

} catch (Exception e) {
log.error("Cassandra数据一致性检查停止失败", e);
}
}

/**
* 检查数据一致性
*/
private void checkDataConsistency() {
try {
// 1. 获取所有keyspace
List<String> keyspaces = dataManager.getAllKeyspaces();

// 2. 检查每个keyspace的一致性
for (String keyspace : keyspaces) {
checkKeyspaceConsistency(keyspace);
}

} catch (Exception e) {
log.error("数据一致性检查失败", e);
}
}

/**
* 检查keyspace一致性
*/
private void checkKeyspaceConsistency(String keyspace) {
try {
// 1. 获取keyspace的所有表
List<String> tables = dataManager.getTablesInKeyspace(keyspace);

// 2. 检查每个表的一致性
for (String table : tables) {
checkTableConsistency(keyspace, table);
}

} catch (Exception e) {
log.error("Keyspace一致性检查失败: {}", keyspace, e);
}
}

/**
* 检查表一致性
*/
private void checkTableConsistency(String keyspace, String table) {
try {
// 1. 检查数据复制
ReplicationStatus replicationStatus = dataManager.checkReplicationStatus(keyspace, table);

// 2. 检查数据完整性
DataIntegrityStatus integrityStatus = dataManager.checkDataIntegrity(keyspace, table);

// 3. 检查修复状态
RepairStatus repairStatus = dataManager.checkRepairStatus(keyspace, table);

// 4. 分析一致性状态
ConsistencyStatus consistencyStatus = consistencyAnalyzer.analyzeConsistency(
replicationStatus, integrityStatus, repairStatus
);

// 5. 处理一致性异常
if (consistencyStatus != ConsistencyStatus.CONSISTENT) {
handleConsistencyIssue(keyspace, table, consistencyStatus);
}

// 6. 记录一致性检查结果
recordConsistencyCheckResult(keyspace, table, consistencyStatus);

} catch (Exception e) {
log.error("表一致性检查失败: {}.{}", keyspace, table, e);
}
}

/**
* 处理一致性异常
*/
private void handleConsistencyIssue(String keyspace, String table, ConsistencyStatus consistencyStatus) {
try {
// 1. 发送一致性告警
sendConsistencyAlert(keyspace, table, consistencyStatus);

// 2. 尝试自动修复
if (consistencyStatus.isAutoRepairable()) {
attemptConsistencyRepair(keyspace, table, consistencyStatus);
}

} catch (Exception e) {
log.error("一致性异常处理失败: {}.{}", keyspace, table, e);
}
}

/**
* 发送一致性告警
*/
private void sendConsistencyAlert(String keyspace, String table, ConsistencyStatus consistencyStatus) {
ConsistencyAlert alert = new ConsistencyAlert();
alert.setAlertType(AlertType.DATA_INCONSISTENT);
alert.setSeverity(consistencyStatus.getSeverity());
alert.setMessage("数据一致性异常: " + keyspace + "." + table);
alert.setKeyspace(keyspace);
alert.setTable(table);
alert.setConsistencyStatus(consistencyStatus);
alert.setTimestamp(System.currentTimeMillis());

// 发送告警
alertService.sendAlert(alert);
}

/**
* 尝试一致性修复
*/
private void attemptConsistencyRepair(String keyspace, String table, ConsistencyStatus consistencyStatus) {
try {
log.info("尝试修复数据一致性: {}.{}", keyspace, table);

// 根据一致性状态选择修复策略
switch (consistencyStatus.getIssueType()) {
case REPLICATION_ISSUE:
repairService.repairReplication(keyspace, table);
break;
case INTEGRITY_ISSUE:
repairService.repairIntegrity(keyspace, table);
break;
case REPAIR_ISSUE:
repairService.repairTable(keyspace, table);
break;
default:
log.warn("无法自动修复的一致性类型: {}", consistencyStatus.getIssueType());
}

} catch (Exception e) {
log.error("一致性修复失败: {}.{}", keyspace, table, e);
}
}

/**
* 记录一致性检查结果
*/
private void recordConsistencyCheckResult(String keyspace, String table, ConsistencyStatus consistencyStatus) {
ConsistencyCheckResult result = new ConsistencyCheckResult();
result.setKeyspace(keyspace);
result.setTable(table);
result.setTimestamp(System.currentTimeMillis());
result.setConsistencyStatus(consistencyStatus);

// 存储一致性检查结果
// consistencyCheckResultStorage.store(result);
}
}

三、性能监控与优化

3.1 性能监控服务

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/**
* Cassandra性能监控服务
*/
@Service
public class PerformanceMonitorService {

@Autowired
private CassandraPerformanceCollector performanceCollector;

@Autowired
private PerformanceAnalyzer performanceAnalyzer;

@Autowired
private PerformanceOptimizer performanceOptimizer;

private final ScheduledExecutorService performanceMonitorScheduler;

public PerformanceMonitorService() {
this.performanceMonitorScheduler = Executors.newScheduledThreadPool(3);
}

/**
* 启动性能监控
*/
public void startPerformanceMonitoring() {
// 启动定期性能监控任务
performanceMonitorScheduler.scheduleAtFixedRate(
this::monitorPerformance,
0,
60,
TimeUnit.SECONDS
);

log.info("Cassandra性能监控启动成功");
}

/**
* 停止性能监控
*/
public void stopPerformanceMonitoring() {
try {
performanceMonitorScheduler.shutdown();
if (!performanceMonitorScheduler.awaitTermination(30, TimeUnit.SECONDS)) {
performanceMonitorScheduler.shutdownNow();
}

log.info("Cassandra性能监控停止成功");

} catch (Exception e) {
log.error("Cassandra性能监控停止失败", e);
}
}

/**
* 监控性能
*/
private void monitorPerformance() {
try {
// 1. 收集性能指标
PerformanceMetrics metrics = performanceCollector.collectMetrics();

// 2. 分析性能状态
PerformanceStatus status = performanceAnalyzer.analyzePerformance(metrics);

// 3. 检查性能异常
if (!status.isHealthy()) {
handlePerformanceIssue(status);
}

// 4. 尝试性能优化
if (status.needsOptimization()) {
attemptPerformanceOptimization(status);
}

// 5. 记录性能监控结果
recordPerformanceMonitoringResult(metrics, status);

} catch (Exception e) {
log.error("性能监控失败", e);
}
}

/**
* 处理性能问题
*/
private void handlePerformanceIssue(PerformanceStatus status) {
try {
// 1. 发送性能告警
sendPerformanceAlert(status);

// 2. 记录性能问题
recordPerformanceIssue(status);

} catch (Exception e) {
log.error("性能问题处理失败", e);
}
}

/**
* 发送性能告警
*/
private void sendPerformanceAlert(PerformanceStatus status) {
PerformanceAlert alert = new PerformanceAlert();
alert.setAlertType(AlertType.PERFORMANCE_ISSUE);
alert.setSeverity(status.getSeverity());
alert.setMessage("Cassandra性能异常");
alert.setPerformanceStatus(status);
alert.setTimestamp(System.currentTimeMillis());

// 发送告警
alertService.sendAlert(alert);
}

/**
* 尝试性能优化
*/
private void attemptPerformanceOptimization(PerformanceStatus status) {
try {
log.info("尝试性能优化");

// 根据性能问题选择优化策略
switch (status.getIssueType()) {
case HIGH_LATENCY:
performanceOptimizer.optimizeLatency(status);
break;
case LOW_THROUGHPUT:
performanceOptimizer.optimizeThroughput(status);
break;
case HIGH_CPU_USAGE:
performanceOptimizer.optimizeCPUUsage(status);
break;
case HIGH_MEMORY_USAGE:
performanceOptimizer.optimizeMemoryUsage(status);
break;
case HIGH_DISK_USAGE:
performanceOptimizer.optimizeDiskUsage(status);
break;
default:
log.warn("无法自动优化的性能问题类型: {}", status.getIssueType());
}

} catch (Exception e) {
log.error("性能优化失败", e);
}
}

/**
* 记录性能监控结果
*/
private void recordPerformanceMonitoringResult(PerformanceMetrics metrics, PerformanceStatus status) {
PerformanceMonitoringResult result = new PerformanceMonitoringResult();
result.setTimestamp(System.currentTimeMillis());
result.setMetrics(metrics);
result.setStatus(status);

// 存储性能监控结果
// performanceMonitoringResultStorage.store(result);
}
}

3.2 性能分析器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/**
* Cassandra性能分析器
*/
@Component
public class PerformanceAnalyzer {

/**
* 分析性能状态
*/
public PerformanceStatus analyzePerformance(PerformanceMetrics metrics) {
PerformanceStatus status = new PerformanceStatus();

try {
// 1. 分析读写延迟
LatencyAnalysis latencyAnalysis = analyzeLatency(metrics);
status.setLatencyAnalysis(latencyAnalysis);

// 2. 分析吞吐量
ThroughputAnalysis throughputAnalysis = analyzeThroughput(metrics);
status.setThroughputAnalysis(throughputAnalysis);

// 3. 分析资源使用率
ResourceUsageAnalysis resourceAnalysis = analyzeResourceUsage(metrics);
status.setResourceAnalysis(resourceAnalysis);

// 4. 分析GC性能
GCAnalysis gcAnalysis = analyzeGC(metrics);
status.setGcAnalysis(gcAnalysis);

// 5. 综合评估性能状态
evaluatePerformanceStatus(status);

} catch (Exception e) {
log.error("性能分析失败", e);
status.setHealthy(false);
status.setSeverity(Severity.HIGH);
}

return status;
}

/**
* 分析延迟
*/
private LatencyAnalysis analyzeLatency(PerformanceMetrics metrics) {
LatencyAnalysis analysis = new LatencyAnalysis();

// 分析读延迟
double readLatency = metrics.getReadLatency();
analysis.setReadLatency(readLatency);
analysis.setReadLatencyStatus(evaluateLatencyStatus(readLatency, "read"));

// 分析写延迟
double writeLatency = metrics.getWriteLatency();
analysis.setWriteLatency(writeLatency);
analysis.setWriteLatencyStatus(evaluateLatencyStatus(writeLatency, "write"));

// 分析延迟趋势
analysis.setLatencyTrend(analyzeLatencyTrend(metrics));

return analysis;
}

/**
* 分析吞吐量
*/
private ThroughputAnalysis analyzeThroughput(PerformanceMetrics metrics) {
ThroughputAnalysis analysis = new ThroughputAnalysis();

// 分析读吞吐量
double readThroughput = metrics.getReadThroughput();
analysis.setReadThroughput(readThroughput);
analysis.setReadThroughputStatus(evaluateThroughputStatus(readThroughput, "read"));

// 分析写吞吐量
double writeThroughput = metrics.getWriteThroughput();
analysis.setWriteThroughput(writeThroughput);
analysis.setWriteThroughputStatus(evaluateThroughputStatus(writeThroughput, "write"));

// 分析吞吐量趋势
analysis.setThroughputTrend(analyzeThroughputTrend(metrics));

return analysis;
}

/**
* 分析资源使用率
*/
private ResourceUsageAnalysis analyzeResourceUsage(PerformanceMetrics metrics) {
ResourceUsageAnalysis analysis = new ResourceUsageAnalysis();

// 分析CPU使用率
double cpuUsage = metrics.getCpuUsage();
analysis.setCpuUsage(cpuUsage);
analysis.setCpuUsageStatus(evaluateResourceUsageStatus(cpuUsage, "cpu"));

// 分析内存使用率
double memoryUsage = metrics.getMemoryUsage();
analysis.setMemoryUsage(memoryUsage);
analysis.setMemoryUsageStatus(evaluateResourceUsageStatus(memoryUsage, "memory"));

// 分析磁盘使用率
double diskUsage = metrics.getDiskUsage();
analysis.setDiskUsage(diskUsage);
analysis.setDiskUsageStatus(evaluateResourceUsageStatus(diskUsage, "disk"));

return analysis;
}

/**
* 分析GC性能
*/
private GCAnalysis analyzeGC(PerformanceMetrics metrics) {
GCAnalysis analysis = new GCAnalysis();

// 分析GC频率
double gcFrequency = metrics.getGcFrequency();
analysis.setGcFrequency(gcFrequency);
analysis.setGcFrequencyStatus(evaluateGCStatus(gcFrequency, "frequency"));

// 分析GC时间
double gcTime = metrics.getGcTime();
analysis.setGcTime(gcTime);
analysis.setGcTimeStatus(evaluateGCStatus(gcTime, "time"));

// 分析GC效率
analysis.setGcEfficiency(calculateGCEfficiency(metrics));

return analysis;
}

/**
* 评估性能状态
*/
private void evaluatePerformanceStatus(PerformanceStatus status) {
boolean isHealthy = true;
Severity maxSeverity = Severity.LOW;

// 评估延迟状态
if (status.getLatencyAnalysis().hasIssues()) {
isHealthy = false;
maxSeverity = Severity.max(maxSeverity, status.getLatencyAnalysis().getMaxSeverity());
}

// 评估吞吐量状态
if (status.getThroughputAnalysis().hasIssues()) {
isHealthy = false;
maxSeverity = Severity.max(maxSeverity, status.getThroughputAnalysis().getMaxSeverity());
}

// 评估资源使用状态
if (status.getResourceAnalysis().hasIssues()) {
isHealthy = false;
maxSeverity = Severity.max(maxSeverity, status.getResourceAnalysis().getMaxSeverity());
}

// 评估GC状态
if (status.getGcAnalysis().hasIssues()) {
isHealthy = false;
maxSeverity = Severity.max(maxSeverity, status.getGcAnalysis().getMaxSeverity());
}

status.setHealthy(isHealthy);
status.setSeverity(maxSeverity);
}

/**
* 评估延迟状态
*/
private Status evaluateLatencyStatus(double latency, String type) {
if (type.equals("read")) {
if (latency > 100) { // 100ms
return Status.CRITICAL;
} else if (latency > 50) { // 50ms
return Status.WARNING;
} else {
return Status.NORMAL;
}
} else if (type.equals("write")) {
if (latency > 200) { // 200ms
return Status.CRITICAL;
} else if (latency > 100) { // 100ms
return Status.WARNING;
} else {
return Status.NORMAL;
}
}

return Status.NORMAL;
}

/**
* 评估吞吐量状态
*/
private Status evaluateThroughputStatus(double throughput, String type) {
if (type.equals("read")) {
if (throughput < 1000) { // 1000 ops/s
return Status.CRITICAL;
} else if (throughput < 5000) { // 5000 ops/s
return Status.WARNING;
} else {
return Status.NORMAL;
}
} else if (type.equals("write")) {
if (throughput < 500) { // 500 ops/s
return Status.CRITICAL;
} else if (throughput < 2000) { // 2000 ops/s
return Status.WARNING;
} else {
return Status.NORMAL;
}
}

return Status.NORMAL;
}

/**
* 评估资源使用状态
*/
private Status evaluateResourceUsageStatus(double usage, String type) {
if (usage > 0.9) { // 90%
return Status.CRITICAL;
} else if (usage > 0.8) { // 80%
return Status.WARNING;
} else {
return Status.NORMAL;
}
}

/**
* 评估GC状态
*/
private Status evaluateGCStatus(double value, String type) {
if (type.equals("frequency")) {
if (value > 10) { // 10 times/min
return Status.CRITICAL;
} else if (value > 5) { // 5 times/min
return Status.WARNING;
} else {
return Status.NORMAL;
}
} else if (type.equals("time")) {
if (value > 1000) { // 1000ms
return Status.CRITICAL;
} else if (value > 500) { // 500ms
return Status.WARNING;
} else {
return Status.NORMAL;
}
}

return Status.NORMAL;
}

/**
* 计算GC效率
*/
private double calculateGCEfficiency(PerformanceMetrics metrics) {
double gcTime = metrics.getGcTime();
double totalTime = metrics.getTotalTime();

if (totalTime > 0) {
return 1.0 - (gcTime / totalTime);
}

return 1.0;
}
}

四、存储监控与管理

4.1 存储监控服务

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/**
* Cassandra存储监控服务
*/
@Service
public class StorageMonitorService {

@Autowired
private CassandraStorageManager storageManager;

@Autowired
private StorageAnalyzer storageAnalyzer;

@Autowired
private StorageOptimizer storageOptimizer;

private final ScheduledExecutorService storageMonitorScheduler;

public StorageMonitorService() {
this.storageMonitorScheduler = Executors.newScheduledThreadPool(3);
}

/**
* 启动存储监控
*/
public void startStorageMonitoring() {
// 启动定期存储监控任务
storageMonitorScheduler.scheduleAtFixedRate(
this::monitorStorage,
0,
120, // 2分钟
TimeUnit.SECONDS
);

log.info("Cassandra存储监控启动成功");
}

/**
* 停止存储监控
*/
public void stopStorageMonitoring() {
try {
storageMonitorScheduler.shutdown();
if (!storageMonitorScheduler.awaitTermination(30, TimeUnit.SECONDS)) {
storageMonitorScheduler.shutdownNow();
}

log.info("Cassandra存储监控停止成功");

} catch (Exception e) {
log.error("Cassandra存储监控停止失败", e);
}
}

/**
* 监控存储
*/
private void monitorStorage() {
try {
// 1. 收集存储指标
StorageMetrics metrics = storageManager.collectStorageMetrics();

// 2. 分析存储状态
StorageStatus status = storageAnalyzer.analyzeStorage(metrics);

// 3. 检查存储异常
if (!status.isHealthy()) {
handleStorageIssue(status);
}

// 4. 尝试存储优化
if (status.needsOptimization()) {
attemptStorageOptimization(status);
}

// 5. 记录存储监控结果
recordStorageMonitoringResult(metrics, status);

} catch (Exception e) {
log.error("存储监控失败", e);
}
}

/**
* 处理存储问题
*/
private void handleStorageIssue(StorageStatus status) {
try {
// 1. 发送存储告警
sendStorageAlert(status);

// 2. 记录存储问题
recordStorageIssue(status);

} catch (Exception e) {
log.error("存储问题处理失败", e);
}
}

/**
* 发送存储告警
*/
private void sendStorageAlert(StorageStatus status) {
StorageAlert alert = new StorageAlert();
alert.setAlertType(AlertType.STORAGE_ISSUE);
alert.setSeverity(status.getSeverity());
alert.setMessage("Cassandra存储异常");
alert.setStorageStatus(status);
alert.setTimestamp(System.currentTimeMillis());

// 发送告警
alertService.sendAlert(alert);
}

/**
* 尝试存储优化
*/
private void attemptStorageOptimization(StorageStatus status) {
try {
log.info("尝试存储优化");

// 根据存储问题选择优化策略
switch (status.getIssueType()) {
case DISK_SPACE_LOW:
storageOptimizer.optimizeDiskSpace(status);
break;
case COMPACTION_BACKLOG:
storageOptimizer.optimizeCompaction(status);
break;
case SSTABLE_COUNT_HIGH:
storageOptimizer.optimizeSSTableCount(status);
break;
case TOMBSTONE_COUNT_HIGH:
storageOptimizer.optimizeTombstoneCount(status);
break;
default:
log.warn("无法自动优化的存储问题类型: {}", status.getIssueType());
}

} catch (Exception e) {
log.error("存储优化失败", e);
}
}

/**
* 记录存储监控结果
*/
private void recordStorageMonitoringResult(StorageMetrics metrics, StorageStatus status) {
StorageMonitoringResult result = new StorageMonitoringResult();
result.setTimestamp(System.currentTimeMillis());
result.setMetrics(metrics);
result.setStatus(status);

// 存储存储监控结果
// storageMonitoringResultStorage.store(result);
}
}

4.2 存储分析器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/**
* Cassandra存储分析器
*/
@Component
public class StorageAnalyzer {

/**
* 分析存储状态
*/
public StorageStatus analyzeStorage(StorageMetrics metrics) {
StorageStatus status = new StorageStatus();

try {
// 1. 分析磁盘空间
DiskSpaceAnalysis diskAnalysis = analyzeDiskSpace(metrics);
status.setDiskSpaceAnalysis(diskAnalysis);

// 2. 分析压缩状态
CompactionAnalysis compactionAnalysis = analyzeCompaction(metrics);
status.setCompactionAnalysis(compactionAnalysis);

// 3. 分析SSTable状态
SSTableAnalysis sstableAnalysis = analyzeSSTables(metrics);
status.setSstableAnalysis(sstableAnalysis);

// 4. 分析Tombstone状态
TombstoneAnalysis tombstoneAnalysis = analyzeTombstones(metrics);
status.setTombstoneAnalysis(tombstoneAnalysis);

// 5. 综合评估存储状态
evaluateStorageStatus(status);

} catch (Exception e) {
log.error("存储分析失败", e);
status.setHealthy(false);
status.setSeverity(Severity.HIGH);
}

return status;
}

/**
* 分析磁盘空间
*/
private DiskSpaceAnalysis analyzeDiskSpace(StorageMetrics metrics) {
DiskSpaceAnalysis analysis = new DiskSpaceAnalysis();

// 分析磁盘使用率
double diskUsage = metrics.getDiskUsage();
analysis.setDiskUsage(diskUsage);
analysis.setDiskUsageStatus(evaluateDiskUsageStatus(diskUsage));

// 分析可用空间
long availableSpace = metrics.getAvailableSpace();
analysis.setAvailableSpace(availableSpace);
analysis.setAvailableSpaceStatus(evaluateAvailableSpaceStatus(availableSpace));

// 分析空间趋势
analysis.setSpaceTrend(analyzeSpaceTrend(metrics));

return analysis;
}

/**
* 分析压缩状态
*/
private CompactionAnalysis analyzeCompaction(StorageMetrics metrics) {
CompactionAnalysis analysis = new CompactionAnalysis();

// 分析压缩队列长度
int compactionQueueLength = metrics.getCompactionQueueLength();
analysis.setCompactionQueueLength(compactionQueueLength);
analysis.setCompactionQueueStatus(evaluateCompactionQueueStatus(compactionQueueLength));

// 分析压缩进度
double compactionProgress = metrics.getCompactionProgress();
analysis.setCompactionProgress(compactionProgress);
analysis.setCompactionProgressStatus(evaluateCompactionProgressStatus(compactionProgress));

// 分析压缩效率
analysis.setCompactionEfficiency(calculateCompactionEfficiency(metrics));

return analysis;
}

/**
* 分析SSTable状态
*/
private SSTableAnalysis analyzeSSTables(StorageMetrics metrics) {
SSTableAnalysis analysis = new SSTableAnalysis();

// 分析SSTable数量
int sstableCount = metrics.getSstableCount();
analysis.setSstableCount(sstableCount);
analysis.setSstableCountStatus(evaluateSSTableCountStatus(sstableCount));

// 分析SSTable大小
long sstableSize = metrics.getSstableSize();
analysis.setSstableSize(sstableSize);
analysis.setSstableSizeStatus(evaluateSSTableSizeStatus(sstableSize));

// 分析SSTable分布
analysis.setSstableDistribution(analyzeSSTableDistribution(metrics));

return analysis;
}

/**
* 分析Tombstone状态
*/
private TombstoneAnalysis analyzeTombstones(StorageMetrics metrics) {
TombstoneAnalysis analysis = new TombstoneAnalysis();

// 分析Tombstone数量
int tombstoneCount = metrics.getTombstoneCount();
analysis.setTombstoneCount(tombstoneCount);
analysis.setTombstoneCountStatus(evaluateTombstoneCountStatus(tombstoneCount));

// 分析Tombstone比例
double tombstoneRatio = metrics.getTombstoneRatio();
analysis.setTombstoneRatio(tombstoneRatio);
analysis.setTombstoneRatioStatus(evaluateTombstoneRatioStatus(tombstoneRatio));

// 分析Tombstone清理效率
analysis.setTombstoneCleanupEfficiency(calculateTombstoneCleanupEfficiency(metrics));

return analysis;
}

/**
* 评估存储状态
*/
private void evaluateStorageStatus(StorageStatus status) {
boolean isHealthy = true;
Severity maxSeverity = Severity.LOW;

// 评估磁盘空间状态
if (status.getDiskSpaceAnalysis().hasIssues()) {
isHealthy = false;
maxSeverity = Severity.max(maxSeverity, status.getDiskSpaceAnalysis().getMaxSeverity());
}

// 评估压缩状态
if (status.getCompactionAnalysis().hasIssues()) {
isHealthy = false;
maxSeverity = Severity.max(maxSeverity, status.getCompactionAnalysis().getMaxSeverity());
}

// 评估SSTable状态
if (status.getSstableAnalysis().hasIssues()) {
isHealthy = false;
maxSeverity = Severity.max(maxSeverity, status.getSstableAnalysis().getMaxSeverity());
}

// 评估Tombstone状态
if (status.getTombstoneAnalysis().hasIssues()) {
isHealthy = false;
maxSeverity = Severity.max(maxSeverity, status.getTombstoneAnalysis().getMaxSeverity());
}

status.setHealthy(isHealthy);
status.setSeverity(maxSeverity);
}

/**
* 评估磁盘使用状态
*/
private Status evaluateDiskUsageStatus(double diskUsage) {
if (diskUsage > 0.9) { // 90%
return Status.CRITICAL;
} else if (diskUsage > 0.8) { // 80%
return Status.WARNING;
} else {
return Status.NORMAL;
}
}

/**
* 评估可用空间状态
*/
private Status evaluateAvailableSpaceStatus(long availableSpace) {
if (availableSpace < 1024 * 1024 * 1024) { // 1GB
return Status.CRITICAL;
} else if (availableSpace < 5 * 1024 * 1024 * 1024) { // 5GB
return Status.WARNING;
} else {
return Status.NORMAL;
}
}

/**
* 评估压缩队列状态
*/
private Status evaluateCompactionQueueStatus(int queueLength) {
if (queueLength > 100) {
return Status.CRITICAL;
} else if (queueLength > 50) {
return Status.WARNING;
} else {
return Status.NORMAL;
}
}

/**
* 评估压缩进度状态
*/
private Status evaluateCompactionProgressStatus(double progress) {
if (progress < 0.1) { // 10%
return Status.CRITICAL;
} else if (progress < 0.3) { // 30%
return Status.WARNING;
} else {
return Status.NORMAL;
}
}

/**
* 评估SSTable数量状态
*/
private Status evaluateSSTableCountStatus(int count) {
if (count > 1000) {
return Status.CRITICAL;
} else if (count > 500) {
return Status.WARNING;
} else {
return Status.NORMAL;
}
}

/**
* 评估SSTable大小状态
*/
private Status evaluateSSTableSizeStatus(long size) {
if (size > 100 * 1024 * 1024 * 1024) { // 100GB
return Status.CRITICAL;
} else if (size > 50 * 1024 * 1024 * 1024) { // 50GB
return Status.WARNING;
} else {
return Status.NORMAL;
}
}

/**
* 评估Tombstone数量状态
*/
private Status evaluateTombstoneCountStatus(int count) {
if (count > 1000000) { // 1M
return Status.CRITICAL;
} else if (count > 100000) { // 100K
return Status.WARNING;
} else {
return Status.NORMAL;
}
}

/**
* 评估Tombstone比例状态
*/
private Status evaluateTombstoneRatioStatus(double ratio) {
if (ratio > 0.5) { // 50%
return Status.CRITICAL;
} else if (ratio > 0.2) { // 20%
return Status.WARNING;
} else {
return Status.NORMAL;
}
}
}

五、企业级Cassandra巡检方案

5.1 巡检配置管理

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
/**
* Cassandra巡检配置管理服务
*/
@Service
public class CassandraInspectionConfigService {

@Autowired
private InspectionConfigRepository configRepository;

/**
* 获取巡检配置
*/
public CassandraInspectionConfig getConfig(String configId) {
return configRepository.findById(configId)
.orElseThrow(() -> new ConfigNotFoundException("Cassandra巡检配置不存在: " + configId));
}

/**
* 保存巡检配置
*/
public void saveConfig(CassandraInspectionConfig config) {
try {
// 验证配置
validateConfig(config);

// 保存配置
configRepository.save(config);

log.info("Cassandra巡检配置保存成功: {}", config.getConfigId());

} catch (Exception e) {
log.error("Cassandra巡检配置保存失败", e);
throw new ConfigSaveException("Cassandra巡检配置保存失败", e);
}
}

/**
* 更新巡检配置
*/
public void updateConfig(String configId, CassandraInspectionConfig config) {
try {
// 检查配置是否存在
if (!configRepository.existsById(configId)) {
throw new ConfigNotFoundException("Cassandra巡检配置不存在: " + configId);
}

// 验证配置
validateConfig(config);

// 更新配置
config.setConfigId(configId);
configRepository.save(config);

log.info("Cassandra巡检配置更新成功: {}", configId);

} catch (Exception e) {
log.error("Cassandra巡检配置更新失败", e);
throw new ConfigUpdateException("Cassandra巡检配置更新失败", e);
}
}

/**
* 删除巡检配置
*/
public void deleteConfig(String configId) {
try {
if (!configRepository.existsById(configId)) {
throw new ConfigNotFoundException("Cassandra巡检配置不存在: " + configId);
}

configRepository.deleteById(configId);

log.info("Cassandra巡检配置删除成功: {}", configId);

} catch (Exception e) {
log.error("Cassandra巡检配置删除失败", e);
throw new ConfigDeleteException("Cassandra巡检配置删除失败", e);
}
}

/**
* 获取所有配置
*/
public List<CassandraInspectionConfig> getAllConfigs() {
return configRepository.findAll();
}

/**
* 验证配置
*/
private void validateConfig(CassandraInspectionConfig config) {
if (config.getConfigId() == null || config.getConfigId().isEmpty()) {
throw new ConfigValidationException("配置ID不能为空");
}

if (config.getClusterName() == null || config.getClusterName().isEmpty()) {
throw new ConfigValidationException("集群名称不能为空");
}

if (config.getNodeAddresses() == null || config.getNodeAddresses().isEmpty()) {
throw new ConfigValidationException("节点地址不能为空");
}

if (config.getInspectionInterval() <= 0) {
throw new ConfigValidationException("巡检间隔必须大于0");
}

if (config.getAlertThresholds() == null || config.getAlertThresholds().isEmpty()) {
throw new ConfigValidationException("告警阈值不能为空");
}
}
}

5.2 巡检报告生成

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
/**
* Cassandra巡检报告生成服务
*/
@Service
public class CassandraInspectionReportService {

@Autowired
private InspectionResultStorageService resultStorageService;

@Autowired
private ReportTemplateService templateService;

/**
* 生成Cassandra巡检报告
*/
public CassandraInspectionReport generateReport(String clusterName, Date startTime, Date endTime) {
CassandraInspectionReport report = new CassandraInspectionReport();

try {
// 1. 设置报告基本信息
report.setReportId(generateReportId());
report.setClusterName(clusterName);
report.setStartTime(startTime);
report.setEndTime(endTime);
report.setGenerateTime(new Date());

// 2. 获取巡检结果
List<InspectionResult> results = resultStorageService.getResultsByCluster(clusterName, startTime, endTime);

// 3. 生成集群统计信息
ClusterStatistics clusterStats = generateClusterStatistics(results);
report.setClusterStatistics(clusterStats);

// 4. 生成节点统计信息
List<NodeStatistics> nodeStats = generateNodeStatistics(results);
report.setNodeStatistics(nodeStats);

// 5. 生成性能分析
PerformanceAnalysis performanceAnalysis = generatePerformanceAnalysis(results);
report.setPerformanceAnalysis(performanceAnalysis);

// 6. 生成存储分析
StorageAnalysis storageAnalysis = generateStorageAnalysis(results);
report.setStorageAnalysis(storageAnalysis);

// 7. 生成异常分析
ExceptionAnalysis exceptionAnalysis = generateExceptionAnalysis(results);
report.setExceptionAnalysis(exceptionAnalysis);

// 8. 生成建议
List<Recommendation> recommendations = generateRecommendations(report);
report.setRecommendations(recommendations);

// 9. 生成报告摘要
String summary = generateSummary(report);
report.setSummary(summary);

log.info("Cassandra巡检报告生成成功: {}", report.getReportId());

} catch (Exception e) {
log.error("Cassandra巡检报告生成失败", e);
throw new ReportGenerationException("Cassandra巡检报告生成失败", e);
}

return report;
}

/**
* 生成集群统计信息
*/
private ClusterStatistics generateClusterStatistics(List<InspectionResult> results) {
ClusterStatistics stats = new ClusterStatistics();

try {
// 计算基础统计
stats.setTotalInspections(results.size());
stats.setSuccessfulInspections((int) results.stream()
.filter(result -> result.getStatus() == InspectionStatus.SUCCESS)
.count());
stats.setFailedInspections((int) results.stream()
.filter(result -> result.getStatus() == InspectionStatus.FAILURE)
.count());

// 计算成功率
if (stats.getTotalInspections() > 0) {
stats.setSuccessRate((double) stats.getSuccessfulInspections() / stats.getTotalInspections());
}

// 计算平均执行时间
double avgDuration = results.stream()
.mapToLong(InspectionResult::getDuration)
.average()
.orElse(0.0);
stats.setAverageDuration(avgDuration);

// 计算异常统计
Map<String, Integer> exceptionCounts = new HashMap<>();
for (InspectionResult result : results) {
for (CheckPointResult checkPointResult : result.getCheckPointResults()) {
if (checkPointResult.getStatus() == CheckPointStatus.FAILED) {
String exceptionType = classifyException(checkPointResult.getErrorMessage());
exceptionCounts.merge(exceptionType, 1, Integer::sum);
}
}
}
stats.setExceptionCounts(exceptionCounts);

} catch (Exception e) {
log.error("集群统计信息生成失败", e);
}

return stats;
}

/**
* 生成节点统计信息
*/
private List<NodeStatistics> generateNodeStatistics(List<InspectionResult> results) {
List<NodeStatistics> nodeStats = new ArrayList<>();

try {
// 按节点分组
Map<String, List<InspectionResult>> nodeResults = results.stream()
.collect(Collectors.groupingBy(result -> extractNodeAddress(result)));

// 为每个节点生成统计信息
for (Map.Entry<String, List<InspectionResult>> entry : nodeResults.entrySet()) {
String nodeAddress = entry.getKey();
List<InspectionResult> nodeResultList = entry.getValue();

NodeStatistics nodeStat = new NodeStatistics();
nodeStat.setNodeAddress(nodeAddress);
nodeStat.setTotalInspections(nodeResultList.size());
nodeStat.setSuccessfulInspections((int) nodeResultList.stream()
.filter(result -> result.getStatus() == InspectionStatus.SUCCESS)
.count());
nodeStat.setFailedInspections((int) nodeResultList.stream()
.filter(result -> result.getStatus() == InspectionStatus.FAILURE)
.count());

// 计算成功率
if (nodeStat.getTotalInspections() > 0) {
nodeStat.setSuccessRate((double) nodeStat.getSuccessfulInspections() / nodeStat.getTotalInspections());
}

// 计算平均执行时间
double avgDuration = nodeResultList.stream()
.mapToLong(InspectionResult::getDuration)
.average()
.orElse(0.0);
nodeStat.setAverageDuration(avgDuration);

nodeStats.add(nodeStat);
}

} catch (Exception e) {
log.error("节点统计信息生成失败", e);
}

return nodeStats;
}

/**
* 生成性能分析
*/
private PerformanceAnalysis generatePerformanceAnalysis(List<InspectionResult> results) {
PerformanceAnalysis analysis = new PerformanceAnalysis();

try {
// 分析延迟趋势
List<Double> latencies = results.stream()
.map(result -> extractLatency(result))
.filter(latency -> latency > 0)
.collect(Collectors.toList());

analysis.setLatencyTrend(analyzeTrend(latencies));
analysis.setAverageLatency(latencies.stream().mapToDouble(Double::doubleValue).average().orElse(0.0));
analysis.setMaxLatency(latencies.stream().mapToDouble(Double::doubleValue).max().orElse(0.0));
analysis.setMinLatency(latencies.stream().mapToDouble(Double::doubleValue).min().orElse(0.0));

// 分析吞吐量趋势
List<Double> throughputs = results.stream()
.map(result -> extractThroughput(result))
.filter(throughput -> throughput > 0)
.collect(Collectors.toList());

analysis.setThroughputTrend(analyzeTrend(throughputs));
analysis.setAverageThroughput(throughputs.stream().mapToDouble(Double::doubleValue).average().orElse(0.0));
analysis.setMaxThroughput(throughputs.stream().mapToDouble(Double::doubleValue).max().orElse(0.0));
analysis.setMinThroughput(throughputs.stream().mapToDouble(Double::doubleValue).min().orElse(0.0));

} catch (Exception e) {
log.error("性能分析生成失败", e);
}

return analysis;
}

/**
* 生成存储分析
*/
private StorageAnalysis generateStorageAnalysis(List<InspectionResult> results) {
StorageAnalysis analysis = new StorageAnalysis();

try {
// 分析磁盘使用趋势
List<Double> diskUsages = results.stream()
.map(result -> extractDiskUsage(result))
.filter(usage -> usage > 0)
.collect(Collectors.toList());

analysis.setDiskUsageTrend(analyzeTrend(diskUsages));
analysis.setAverageDiskUsage(diskUsages.stream().mapToDouble(Double::doubleValue).average().orElse(0.0));
analysis.setMaxDiskUsage(diskUsages.stream().mapToDouble(Double::doubleValue).max().orElse(0.0));
analysis.setMinDiskUsage(diskUsages.stream().mapToDouble(Double::doubleValue).min().orElse(0.0));

// 分析压缩状态
List<Integer> compactionQueueLengths = results.stream()
.map(result -> extractCompactionQueueLength(result))
.filter(length -> length >= 0)
.collect(Collectors.toList());

analysis.setCompactionQueueTrend(analyzeTrend(compactionQueueLengths));
analysis.setAverageCompactionQueueLength(compactionQueueLengths.stream().mapToInt(Integer::intValue).average().orElse(0.0));
analysis.setMaxCompactionQueueLength(compactionQueueLengths.stream().mapToInt(Integer::intValue).max().orElse(0));
analysis.setMinCompactionQueueLength(compactionQueueLengths.stream().mapToInt(Integer::intValue).min().orElse(0));

} catch (Exception e) {
log.error("存储分析生成失败", e);
}

return analysis;
}

/**
* 生成异常分析
*/
private ExceptionAnalysis generateExceptionAnalysis(List<InspectionResult> results) {
ExceptionAnalysis analysis = new ExceptionAnalysis();

try {
// 统计异常类型
Map<String, Integer> exceptionTypeCount = new HashMap<>();
Map<String, Integer> exceptionMessageCount = new HashMap<>();

for (InspectionResult result : results) {
for (CheckPointResult checkPointResult : result.getCheckPointResults()) {
if (checkPointResult.getStatus() == CheckPointStatus.FAILED) {
String errorMessage = checkPointResult.getErrorMessage();

// 统计异常消息
exceptionMessageCount.merge(errorMessage, 1, Integer::sum);

// 统计异常类型
String exceptionType = classifyException(errorMessage);
exceptionTypeCount.merge(exceptionType, 1, Integer::sum);
}
}
}

analysis.setExceptionTypeCount(exceptionTypeCount);
analysis.setExceptionMessageCount(exceptionMessageCount);

// 找出最常见的异常
String mostCommonException = exceptionMessageCount.entrySet().stream()
.max(Map.Entry.comparingByValue())
.map(Map.Entry::getKey)
.orElse("无");

analysis.setMostCommonException(mostCommonException);

} catch (Exception e) {
log.error("异常分析生成失败", e);
}

return analysis;
}

/**
* 生成建议
*/
private List<Recommendation> generateRecommendations(CassandraInspectionReport report) {
List<Recommendation> recommendations = new ArrayList<>();

try {
// 基于集群统计生成建议
ClusterStatistics clusterStats = report.getClusterStatistics();
if (clusterStats.getSuccessRate() < 0.8) {
Recommendation rec = new Recommendation();
rec.setType(RecommendationType.CLUSTER_STABILITY);
rec.setPriority(Priority.HIGH);
rec.setTitle("提升集群稳定性");
rec.setDescription("当前集群巡检成功率为" + String.format("%.2f", clusterStats.getSuccessRate() * 100) + "%,建议检查集群配置和网络连接");
recommendations.add(rec);
}

// 基于性能分析生成建议
PerformanceAnalysis perfAnalysis = report.getPerformanceAnalysis();
if (perfAnalysis.getAverageLatency() > 100) {
Recommendation rec = new Recommendation();
rec.setType(RecommendationType.PERFORMANCE);
rec.setPriority(Priority.MEDIUM);
rec.setTitle("优化集群性能");
rec.setDescription("平均延迟为" + String.format("%.2f", perfAnalysis.getAverageLatency()) + "ms,建议优化查询和调整配置");
recommendations.add(rec);
}

// 基于存储分析生成建议
StorageAnalysis storageAnalysis = report.getStorageAnalysis();
if (storageAnalysis.getAverageDiskUsage() > 0.8) {
Recommendation rec = new Recommendation();
rec.setType(RecommendationType.STORAGE);
rec.setPriority(Priority.HIGH);
rec.setTitle("优化存储空间");
rec.setDescription("平均磁盘使用率为" + String.format("%.2f", storageAnalysis.getAverageDiskUsage() * 100) + "%,建议清理数据和增加存储");
recommendations.add(rec);
}

// 基于异常分析生成建议
ExceptionAnalysis exceptionAnalysis = report.getExceptionAnalysis();
if (exceptionAnalysis.getMostCommonException() != null &&
!exceptionAnalysis.getMostCommonException().equals("无")) {
Recommendation rec = new Recommendation();
rec.setType(RecommendationType.EXCEPTION_HANDLING);
rec.setPriority(Priority.MEDIUM);
rec.setTitle("处理常见异常");
rec.setDescription("最常见的异常是:" + exceptionAnalysis.getMostCommonException() + ",建议优先处理");
recommendations.add(rec);
}

} catch (Exception e) {
log.error("建议生成失败", e);
}

return recommendations;
}

/**
* 生成报告摘要
*/
private String generateSummary(CassandraInspectionReport report) {
StringBuilder summary = new StringBuilder();

summary.append("Cassandra巡检报告摘要\n");
summary.append("集群名称: ").append(report.getClusterName()).append("\n");
summary.append("统计期间: ").append(report.getStartTime()).append(" - ").append(report.getEndTime()).append("\n");
summary.append("总巡检次数: ").append(report.getClusterStatistics().getTotalInspections()).append("\n");
summary.append("成功率: ").append(String.format("%.2f", report.getClusterStatistics().getSuccessRate() * 100)).append("%\n");
summary.append("平均延迟: ").append(String.format("%.2f", report.getPerformanceAnalysis().getAverageLatency())).append("ms\n");
summary.append("平均磁盘使用率: ").append(String.format("%.2f", report.getStorageAnalysis().getAverageDiskUsage() * 100)).append("%\n");

if (!report.getRecommendations().isEmpty()) {
summary.append("主要建议: ").append(report.getRecommendations().get(0).getTitle()).append("\n");
}

return summary.toString();
}

/**
* 分类异常
*/
private String classifyException(String errorMessage) {
if (errorMessage.contains("连接") || errorMessage.contains("connection")) {
return "连接异常";
} else if (errorMessage.contains("超时") || errorMessage.contains("timeout")) {
return "超时异常";
} else if (errorMessage.contains("磁盘") || errorMessage.contains("disk")) {
return "磁盘异常";
} else if (errorMessage.contains("内存") || errorMessage.contains("memory")) {
return "内存异常";
} else if (errorMessage.contains("压缩") || errorMessage.contains("compaction")) {
return "压缩异常";
} else {
return "其他异常";
}
}

/**
* 分析趋势
*/
private TrendDirection analyzeTrend(List<? extends Number> values) {
if (values.size() < 2) {
return TrendDirection.STABLE;
}

// 简单趋势分析
double firstHalf = values.subList(0, values.size() / 2).stream()
.mapToDouble(Number::doubleValue)
.average()
.orElse(0.0);

double secondHalf = values.subList(values.size() / 2, values.size()).stream()
.mapToDouble(Number::doubleValue)
.average()
.orElse(0.0);

if (secondHalf > firstHalf * 1.1) {
return TrendDirection.INCREASING;
} else if (secondHalf < firstHalf * 0.9) {
return TrendDirection.DECREASING;
} else {
return TrendDirection.STABLE;
}
}

/**
* 生成报告ID
*/
private String generateReportId() {
return "cassandra-report-" + System.currentTimeMillis() + "-" + Thread.currentThread().getId();
}
}

六、最佳实践与总结

6.1 Cassandra自动巡检最佳实践

  1. 集群监控策略

    • 建立全面的集群监控体系
    • 监控节点健康状态
    • 监控数据一致性
  2. 性能优化策略

    • 监控读写性能
    • 优化延迟和吞吐量
    • 监控资源使用率
  3. 存储管理策略

    • 监控磁盘空间使用
    • 管理压缩状态
    • 优化SSTable分布
  4. 异常处理机制

    • 建立完善的异常分类
    • 实现智能告警
    • 提供自动修复能力

6.2 架构师级Cassandra运维技能

  1. 集群管理能力

    • 深入理解Cassandra架构
    • 掌握集群扩展和收缩
    • 管理数据分布和复制
  2. 性能调优能力

    • 优化读写性能
    • 调整JVM参数
    • 优化压缩策略
  3. 故障处理能力

    • 快速定位问题
    • 制定修复方案
    • 预防潜在问题
  4. 监控运维能力

    • 建立监控体系
    • 实现自动化运维
    • 持续优化改进

6.3 持续改进建议

  1. 监控体系完善

    • 完善监控指标
    • 优化告警策略
    • 提升监控精度
  2. 自动化程度提升

    • 实现更多自动修复
    • 优化巡检策略
    • 提升运维效率
  3. 知识积累

    • 建立运维知识库
    • 总结最佳实践
    • 形成标准化流程

总结

Cassandra自动巡检是企业级NoSQL数据库运维的核心能力,通过智能的集群监控策略、完善的性能优化机制和系统化的存储管理,能够及时发现集群异常,预防数据丢失,保障企业级应用的高可用性。本文从集群监控设计到性能优化,从基础原理到企业级实践,系统梳理了Cassandra自动巡检的完整解决方案。

关键要点:

  1. 集群监控策略:全面的集群监控和节点健康检查
  2. 性能优化机制:智能的性能监控和优化
  3. 存储管理方案:完善的存储监控和优化
  4. 企业级实践:配置管理、报告生成、持续改进

通过深入理解这些技术要点,架构师能够设计出完善的Cassandra自动巡检系统,提升集群的稳定性和可靠性,确保企业级应用的高可用性。