1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
| @Component public class RedoLogPerformanceOptimizer { @Autowired private RedoLogManager redoLogManager; @Autowired private SystemMonitor systemMonitor;
public RedoLogOptimizationResult optimizeRedoLogPerformance() { try { RedoLogPerformanceAnalysis analysis = analyzeRedoLogPerformance(); List<RedoLogBottleneck> bottlenecks = identifyBottlenecks(analysis); List<OptimizationSuggestion> suggestions = generateOptimizationSuggestions(bottlenecks); OptimizationResult result = applyOptimizations(suggestions); return new RedoLogOptimizationResult(result.isSuccess(), result.getMessage(), suggestions); } catch (Exception e) { logger.error("Redo Log性能优化失败: {}", e.getMessage()); return new RedoLogOptimizationResult(false, "优化失败: " + e.getMessage(), null); } }
private RedoLogPerformanceAnalysis analyzeRedoLogPerformance() { RedoLogPerformanceAnalysis analysis = new RedoLogPerformanceAnalysis(); double writeThroughput = calculateWriteThroughput(); analysis.setWriteThroughput(writeThroughput); double flushLatency = calculateFlushLatency(); analysis.setFlushLatency(flushLatency); double bufferUtilization = calculateBufferUtilization(); analysis.setBufferUtilization(bufferUtilization); double fileUtilization = calculateFileUtilization(); analysis.setFileUtilization(fileUtilization); return analysis; }
private double calculateWriteThroughput() { long bytesWritten = getBytesWrittenInLastSecond(); return bytesWritten / 1024.0 / 1024.0; }
private double calculateFlushLatency() { List<Long> flushTimes = getFlushTimesInLastMinute(); if (flushTimes.isEmpty()) { return 0.0; } return flushTimes.stream().mapToLong(Long::longValue).average().orElse(0.0); }
private double calculateBufferUtilization() { long currentBufferSize = getCurrentBufferSize(); long maxBufferSize = getMaxBufferSize(); if (maxBufferSize == 0) { return 0.0; } return (double) currentBufferSize / maxBufferSize; }
private double calculateFileUtilization() { long usedFileSize = getUsedFileSize(); long totalFileSize = getTotalFileSize(); if (totalFileSize == 0) { return 0.0; } return (double) usedFileSize / totalFileSize; }
private List<RedoLogBottleneck> identifyBottlenecks(RedoLogPerformanceAnalysis analysis) { List<RedoLogBottleneck> bottlenecks = new ArrayList<>(); if (analysis.getWriteThroughput() < 100) { bottlenecks.add(new RedoLogBottleneck( BottleneckType.LOW_WRITE_THROUGHPUT, "写入吞吐量过低: " + analysis.getWriteThroughput() + " MB/s", analysis.getWriteThroughput())); } if (analysis.getFlushLatency() > 100) { bottlenecks.add(new RedoLogBottleneck( BottleneckType.HIGH_FLUSH_LATENCY, "刷盘延迟过高: " + analysis.getFlushLatency() + " ms", analysis.getFlushLatency())); } if (analysis.getBufferUtilization() > 0.9) { bottlenecks.add(new RedoLogBottleneck( BottleneckType.HIGH_BUFFER_UTILIZATION, "缓冲区使用率过高: " + analysis.getBufferUtilization(), analysis.getBufferUtilization())); } if (analysis.getFileUtilization() > 0.8) { bottlenecks.add(new RedoLogBottleneck( BottleneckType.HIGH_FILE_UTILIZATION, "文件使用率过高: " + analysis.getFileUtilization(), analysis.getFileUtilization())); } return bottlenecks; }
private List<OptimizationSuggestion> generateOptimizationSuggestions(List<RedoLogBottleneck> bottlenecks) { List<OptimizationSuggestion> suggestions = new ArrayList<>(); for (RedoLogBottleneck bottleneck : bottlenecks) { switch (bottleneck.getType()) { case LOW_WRITE_THROUGHPUT: suggestions.add(createWriteThroughputOptimization(bottleneck)); break; case HIGH_FLUSH_LATENCY: suggestions.add(createFlushLatencyOptimization(bottleneck)); break; case HIGH_BUFFER_UTILIZATION: suggestions.add(createBufferOptimization(bottleneck)); break; case HIGH_FILE_UTILIZATION: suggestions.add(createFileOptimization(bottleneck)); break; } } return suggestions; }
private OptimizationSuggestion createWriteThroughputOptimization(RedoLogBottleneck bottleneck) { OptimizationSuggestion suggestion = new OptimizationSuggestion(); suggestion.setType(OptimizationType.INCREASE_BUFFER_SIZE); suggestion.setTitle("增加缓冲区大小"); suggestion.setDescription("当前写入吞吐量过低,建议增加Redo Log缓冲区大小"); suggestion.setPriority(OptimizationPriority.HIGH); suggestion.addParameter("bufferSize", "16777216"); suggestion.addParameter("flushInterval", "1000"); return suggestion; }
private OptimizationSuggestion createFlushLatencyOptimization(RedoLogBottleneck bottleneck) { OptimizationSuggestion suggestion = new OptimizationSuggestion(); suggestion.setType(OptimizationType.OPTIMIZE_FLUSH_STRATEGY); suggestion.setTitle("优化刷盘策略"); suggestion.setDescription("当前刷盘延迟过高,建议优化刷盘策略"); suggestion.setPriority(OptimizationPriority.HIGH); suggestion.addParameter("syncFlush", "false"); suggestion.addParameter("flushInterval", "500"); suggestion.addParameter("flushBufferSize", "8388608"); return suggestion; }
private OptimizationSuggestion createBufferOptimization(RedoLogBottleneck bottleneck) { OptimizationSuggestion suggestion = new OptimizationSuggestion(); suggestion.setType(OptimizationType.INCREASE_BUFFER_SIZE); suggestion.setTitle("增加缓冲区大小"); suggestion.setDescription("当前缓冲区使用率过高,建议增加缓冲区大小"); suggestion.setPriority(OptimizationPriority.MEDIUM); suggestion.addParameter("bufferSize", "33554432"); suggestion.addParameter("flushInterval", "2000"); return suggestion; }
private OptimizationSuggestion createFileOptimization(RedoLogBottleneck bottleneck) { OptimizationSuggestion suggestion = new OptimizationSuggestion(); suggestion.setType(OptimizationType.INCREASE_FILE_COUNT); suggestion.setTitle("增加文件数量"); suggestion.setDescription("当前文件使用率过高,建议增加Redo Log文件数量"); suggestion.setPriority(OptimizationPriority.MEDIUM); suggestion.addParameter("fileCount", "4"); suggestion.addParameter("fileSize", "1073741824"); return suggestion; }
private OptimizationResult applyOptimizations(List<OptimizationSuggestion> suggestions) { try { for (OptimizationSuggestion suggestion : suggestions) { applyOptimizationSuggestion(suggestion); } return new OptimizationResult(true, "优化配置应用成功"); } catch (Exception e) { logger.error("应用优化配置失败: {}", e.getMessage()); return new OptimizationResult(false, "应用优化配置失败: " + e.getMessage()); } }
private void applyOptimizationSuggestion(OptimizationSuggestion suggestion) { switch (suggestion.getType()) { case INCREASE_BUFFER_SIZE: applyBufferSizeIncrease(suggestion); break; case OPTIMIZE_FLUSH_STRATEGY: applyFlushStrategyOptimization(suggestion); break; case INCREASE_FILE_COUNT: applyFileCountIncrease(suggestion); break; } }
private void applyBufferSizeIncrease(OptimizationSuggestion suggestion) { String bufferSizeStr = suggestion.getParameter("bufferSize"); String flushIntervalStr = suggestion.getParameter("flushInterval"); if (bufferSizeStr != null) { long bufferSize = Long.parseLong(bufferSizeStr); updateBufferSize(bufferSize); logger.info("缓冲区大小已更新为: {} bytes", bufferSize); } if (flushIntervalStr != null) { long flushInterval = Long.parseLong(flushIntervalStr); updateFlushInterval(flushInterval); logger.info("刷盘间隔已更新为: {} ms", flushInterval); } }
private void applyFlushStrategyOptimization(OptimizationSuggestion suggestion) { String syncFlushStr = suggestion.getParameter("syncFlush"); String flushIntervalStr = suggestion.getParameter("flushInterval"); String flushBufferSizeStr = suggestion.getParameter("flushBufferSize"); if (syncFlushStr != null) { boolean syncFlush = Boolean.parseBoolean(syncFlushStr); updateSyncFlush(syncFlush); logger.info("同步刷盘已更新为: {}", syncFlush); } if (flushIntervalStr != null) { long flushInterval = Long.parseLong(flushIntervalStr); updateFlushInterval(flushInterval); logger.info("刷盘间隔已更新为: {} ms", flushInterval); } if (flushBufferSizeStr != null) { long flushBufferSize = Long.parseLong(flushBufferSizeStr); updateFlushBufferSize(flushBufferSize); logger.info("刷盘缓冲区大小已更新为: {} bytes", flushBufferSize); } }
private void applyFileCountIncrease(OptimizationSuggestion suggestion) { String fileCountStr = suggestion.getParameter("fileCount"); String fileSizeStr = suggestion.getParameter("fileSize"); if (fileCountStr != null) { int fileCount = Integer.parseInt(fileCountStr); updateFileCount(fileCount); logger.info("文件数量已更新为: {}", fileCount); } if (fileSizeStr != null) { long fileSize = Long.parseLong(fileSizeStr); updateFileSize(fileSize); logger.info("文件大小已更新为: {} bytes", fileSize); } } private void updateBufferSize(long bufferSize) { logger.info("更新缓冲区大小为: {}", bufferSize); } private void updateFlushInterval(long flushInterval) { logger.info("更新刷盘间隔为: {}", flushInterval); } private void updateSyncFlush(boolean syncFlush) { logger.info("更新同步刷盘为: {}", syncFlush); } private void updateFlushBufferSize(long flushBufferSize) { logger.info("更新刷盘缓冲区大小为: {}", flushBufferSize); } private void updateFileCount(int fileCount) { logger.info("更新文件数量为: {}", fileCount); } private void updateFileSize(long fileSize) { logger.info("更新文件大小为: {}", fileSize); } private long getBytesWrittenInLastSecond() { return 1024 * 1024; } private List<Long> getFlushTimesInLastMinute() { return Arrays.asList(50L, 60L, 70L, 80L, 90L); } private long getCurrentBufferSize() { return 8 * 1024 * 1024; } private long getMaxBufferSize() { return 16 * 1024 * 1024; } private long getUsedFileSize() { return 2 * 1024 * 1024 * 1024; } private long getTotalFileSize() { return 3 * 1024 * 1024 * 1024; } }
public class RedoLogPerformanceAnalysis { private double writeThroughput; private double flushLatency; private double bufferUtilization; private double fileUtilization; }
public class RedoLogBottleneck { private BottleneckType type; private String description; private double severity; }
public enum BottleneckType { LOW_WRITE_THROUGHPUT, HIGH_FLUSH_LATENCY, HIGH_BUFFER_UTILIZATION, HIGH_FILE_UTILIZATION }
public class RedoLogOptimizationResult { private boolean success; private String message; private List<OptimizationSuggestion> suggestions; }
|