第21集云服务机房分布式代码优化实战
|字数总计:5.1k|阅读时长:25分钟|阅读量:
引言
随着企业业务的快速发展和数据量的爆炸式增长,传统的单机房部署模式已经无法满足高可用、高性能的需求。云服务机房分布式部署成为现代企业架构的必然选择。通过合理的机房分布、数据分片、负载均衡等技术手段,可以构建高可用、高性能的分布式系统。
本文将深入探讨云服务机房分布式代码优化策略,从Cassandra分布式存储配置到存储过程优化,从流程设计到使用示例,提供完整的分布式系统优化解决方案。
云服务架构设计
1. 多机房分布式架构
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
| public class CloudServiceArchitecture { public static class DataCenterConfig {
private String name; private String region; private String zone; private List<String> cassandraNodes; private int replicationFactor; public DataCenterConfig(String name, String region, String zone, List<String> cassandraNodes, int replicationFactor) {
this.name = name; this.region = region; this.zone = zone; this.cassandraNodes = cassandraNodes; this.replicationFactor = replicationFactor; } public String getName() { return name; } public String getRegion() { return region; } public String getZone() { return zone; } public List<String> getCassandraNodes() { return cassandraNodes; } public int getReplicationFactor() { return replicationFactor; } } private static final Map<String, DataCenterConfig> DATA_CENTERS = new HashMap<>(); static { DATA_CENTERS.put("beijing", new DataCenterConfig( "beijing", "cn-north-1", "cn-north-1a", Arrays.asList("10.0.1.10", "10.0.1.11", "10.0.1.12"), 3 )); DATA_CENTERS.put("shanghai", new DataCenterConfig( "shanghai", "cn-east-1", "cn-east-1a", Arrays.asList("10.0.2.10", "10.0.2.11", "10.0.2.12"), 3 )); DATA_CENTERS.put("shenzhen", new DataCenterConfig( "shenzhen", "cn-south-1", "cn-south-1a", Arrays.asList("10.0.3.10", "10.0.3.11", "10.0.3.12"), 3 )); } public static DataCenterConfig getDataCenterConfig(String name) { return DATA_CENTERS.get(name); } public static Map<String, DataCenterConfig> getAllDataCenters() { return new HashMap<>(DATA_CENTERS); } public static void explainArchitecture() { System.out.println("=== 云服务多机房架构设计 ==="); System.out.println("1. 多机房部署:北京、上海、深圳三个机房"); System.out.println("2. 数据复制:每个机房3个副本,保证高可用"); System.out.println("3. 负载均衡:跨机房负载均衡,提高性能"); System.out.println("4. 故障转移:单机房故障时自动切换到其他机房"); System.out.println("5. 数据一致性:使用Cassandra的最终一致性模型"); } }
|
2. 分布式存储策略
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
| public class DistributedStorageStrategy { public static class DataShardingStrategy { private int shardCount; private String shardKey; private ShardingAlgorithm algorithm; public DataShardingStrategy(int shardCount, String shardKey, ShardingAlgorithm algorithm) { this.shardCount = shardCount; this.shardKey = shardKey; this.algorithm = algorithm; } public int calculateShard(Object key) { return algorithm.calculateShard(key, shardCount); } public ShardInfo getShardInfo(Object key) { int shardId = calculateShard(key); return new ShardInfo(shardId, getDataCenterForShard(shardId)); } private String getDataCenterForShard(int shardId) { String[] dataCenters = {"beijing", "shanghai", "shenzhen"}; return dataCenters[shardId % dataCenters.length]; } } public static class ShardInfo { private int shardId; private String dataCenter; public ShardInfo(int shardId, String dataCenter) { this.shardId = shardId; this.dataCenter = dataCenter; } public int getShardId() { return shardId; } public String getDataCenter() { return dataCenter; } } public interface ShardingAlgorithm { int calculateShard(Object key, int shardCount); } public static class HashShardingAlgorithm implements ShardingAlgorithm { @Override public int calculateShard(Object key, int shardCount) { return Math.abs(key.hashCode()) % shardCount; } } public static class ConsistentHashShardingAlgorithm implements ShardingAlgorithm { private final TreeMap<Long, Integer> circle = new TreeMap<>(); public ConsistentHashShardingAlgorithm(int shardCount) { for (int i = 0; i < shardCount; i++) { for (int j = 0; j < 160; j++) { String virtualNode = "shard-" + i + "-node-" + j; long hash = hash(virtualNode); circle.put(hash, i); } } } @Override public int calculateShard(Object key, int shardCount) { long hash = hash(key.toString()); Map.Entry<Long, Integer> entry = circle.ceilingEntry(hash); if (entry == null) { entry = circle.firstEntry(); } return entry.getValue(); } private long hash(String key) { return key.hashCode(); } } }
|
Cassandra分布式存储优化
1. 多机房Cassandra配置
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
| @Configuration public class MultiDataCenterCassandraConfig { private static final Logger logger = LoggerFactory.getLogger(MultiDataCenterCassandraConfig.class); @Value("${cassandra.primary.datacenter}") private String primaryDataCenter; @Value("${cassandra.primary.nodes}") private String primaryNodes; @Value("${cassandra.backup.datacenter}") private String backupDataCenter; @Value("${cassandra.backup.nodes}") private String backupNodes; @Value("${cassandra.pool.core.connections}") private int coreConnections; @Value("${cassandra.pool.max.connections}") private int maxConnections; @Value("${cassandra.timeout.read}") private int readTimeout; @Value("${cassandra.timeout.write}") private int writeTimeout; @Value("${cassandra.retry.policy}") private String retryPolicy;
@Bean(name = "multiDataCenterCassandraCluster") public Cluster createMultiDataCenterCluster() { logger.info("创建多机房Cassandra集群..."); PoolingOptions poolingOptions = new PoolingOptions(); poolingOptions.setCoreConnectionsPerHost(HostDistance.LOCAL, coreConnections); poolingOptions.setMaxConnectionsPerHost(HostDistance.LOCAL, maxConnections); poolingOptions.setCoreConnectionsPerHost(HostDistance.REMOTE, 1); poolingOptions.setMaxConnectionsPerHost(HostDistance.REMOTE, 2); RetryPolicy retryPolicyInstance = createRetryPolicy(retryPolicy); LoadBalancingPolicy loadBalancingPolicy = new TokenAwarePolicy( DCAwareRoundRobinPolicy.builder() .withLocalDc(primaryDataCenter) .withUsedHostsPerRemoteDc(2) .build() ); Cluster.Builder clusterBuilder = Cluster.builder() .withPoolingOptions(poolingOptions) .withRetryPolicy(retryPolicyInstance) .withLoadBalancingPolicy(loadBalancingPolicy) .withSocketOptions(createSocketOptions()); String[] primaryNodeList = primaryNodes.split(","); for (String node : primaryNodeList) { clusterBuilder.addContactPoint(node.trim()); } String[] backupNodeList = backupNodes.split(","); for (String node : backupNodeList) { clusterBuilder.addContactPoint(node.trim()); } Cluster cluster = clusterBuilder.build(); logClusterInfo(cluster); return cluster; }
@Bean(name = "multiDataCenterCassandraSession") public Session createCassandraSession(@Qualifier("multiDataCenterCassandraCluster") Cluster cluster) { logger.info("创建Cassandra会话..."); Session session = cluster.connect(); String keyspace = "orgmsg_backup"; if (!session.getCluster().getMetadata().getKeyspace(keyspace) == null) { session.execute("USE " + keyspace); } logger.info("Cassandra会话创建成功"); return session; }
private RetryPolicy createRetryPolicy(String policyType) { switch (policyType.toLowerCase()) { case "default": return DefaultRetryPolicy.INSTANCE; case "downgrading": return DowngradingConsistencyRetryPolicy.INSTANCE; case "fallthrough": return FallthroughRetryPolicy.INSTANCE; default: return DefaultRetryPolicy.INSTANCE; } }
private SocketOptions createSocketOptions() { SocketOptions socketOptions = new SocketOptions(); socketOptions.setReadTimeoutMillis(readTimeout); socketOptions.setConnectTimeoutMillis(5000); socketOptions.setKeepAlive(true); return socketOptions; }
private void logClusterInfo(Cluster cluster) { Metadata metadata = cluster.getMetadata(); logger.info("=== Cassandra集群信息 ==="); logger.info("集群名称: {}", cluster.getClusterName()); logger.info("主机房: {}", primaryDataCenter); logger.info("备机房: {}", backupDataCenter); for (Host host : metadata.getAllHosts()) { logger.info("节点: {} - 状态: {} - 机房: {}", host.getAddress(), host.getState(), host.getDatacenter()); } for (KeyspaceMetadata keyspace : metadata.getKeyspaces()) { logger.info("键空间: {} - 副本策略: {}", keyspace.getName(), keyspace.getReplication()); } } }
|
2. 存储过程优化
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
| @Service public class CassandraStorageOptimization { private static final Logger logger = LoggerFactory.getLogger(CassandraStorageOptimization.class); @Autowired @Qualifier("multiDataCenterCassandraSession") private Session session; private static final int BATCH_SIZE = 100; private static final int MAX_RETRIES = 3;
public void optimizedBatchInsert(List<OrgMessage> messages) { logger.info("开始批量插入 {} 条消息", messages.size()); Map<String, List<OrgMessage>> shardedMessages = groupByShard(messages); shardedMessages.entrySet().parallelStream().forEach(entry -> { String shardId = entry.getKey(); List<OrgMessage> shardMessages = entry.getValue(); processShardBatch(shardId, shardMessages); }); logger.info("批量插入完成"); }
private Map<String, List<OrgMessage>> groupByShard(List<OrgMessage> messages) { Map<String, List<OrgMessage>> shardedMessages = new HashMap<>(); for (OrgMessage message : messages) { String shardId = calculateShardId(message.getId()); shardedMessages.computeIfAbsent(shardId, k -> new ArrayList<>()).add(message); } return shardedMessages; }
private void processShardBatch(String shardId, List<OrgMessage> messages) { logger.info("处理分片 {} 的 {} 条消息", shardId, messages.size()); for (int i = 0; i < messages.size(); i += BATCH_SIZE) { int endIndex = Math.min(i + BATCH_SIZE, messages.size()); List<OrgMessage> batch = messages.subList(i, endIndex); executeBatchWithRetry(batch); } }
private void executeBatchWithRetry(List<OrgMessage> batch) { int retryCount = 0; boolean success = false; while (retryCount < MAX_RETRIES && !success) { try { executeBatch(batch); success = true; } catch (Exception e) { retryCount++; logger.warn("批量执行失败,重试第 {} 次: {}", retryCount, e.getMessage()); if (retryCount < MAX_RETRIES) { try { Thread.sleep(1000 * retryCount); } catch (InterruptedException ie) { Thread.currentThread().interrupt(); break; } } } } if (!success) { logger.error("批量执行失败,已达到最大重试次数"); throw new RuntimeException("批量执行失败"); } }
private void executeBatch(List<OrgMessage> batch) { BatchStatement batchStatement = new BatchStatement(); for (OrgMessage message : batch) { PreparedStatement preparedStatement = getPreparedStatement(); BoundStatement boundStatement = preparedStatement.bind( message.getId(), message.getContent(), message.getTimestamp(), message.getSource(), message.getDestination() ); batchStatement.add(boundStatement); } session.execute(batchStatement); }
private String calculateShardId(String messageId) { int hash = messageId.hashCode(); int shardCount = 3; return "shard_" + (Math.abs(hash) % shardCount); }
private PreparedStatement getPreparedStatement() { String cql = "INSERT INTO orgmsg_backup.messages (id, content, timestamp, source, destination) VALUES (?, ?, ?, ?, ?)"; return session.prepare(cql); }
public CompletableFuture<Void> asyncInsert(OrgMessage message) { return CompletableFuture.runAsync(() -> { try { PreparedStatement preparedStatement = getPreparedStatement(); BoundStatement boundStatement = preparedStatement.bind( message.getId(), message.getContent(), message.getTimestamp(), message.getSource(), message.getDestination() ); session.executeAsync(boundStatement); } catch (Exception e) { logger.error("异步插入失败: {}", e.getMessage()); throw new RuntimeException(e); } }); }
public List<OrgMessage> optimizedQuery(String queryId, int limit) { String cql = "SELECT * FROM orgmsg_backup.messages WHERE id = ? LIMIT ?"; PreparedStatement preparedStatement = session.prepare(cql); BoundStatement boundStatement = preparedStatement.bind(queryId, limit); ResultSet resultSet = session.execute(boundStatement); List<OrgMessage> messages = new ArrayList<>(); for (Row row : resultSet) { OrgMessage message = new OrgMessage(); message.setId(row.getString("id")); message.setContent(row.getString("content")); message.setTimestamp(row.getTimestamp("timestamp")); message.setSource(row.getString("source")); message.setDestination(row.getString("destination")); messages.add(message); } return messages; } }
|
3. 数据模型优化
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
| public class DataModelOptimization {
public static void createOptimizedKeyspace(Session session) { String cql = "CREATE KEYSPACE IF NOT EXISTS orgmsg_backup " + "WITH REPLICATION = { " + " 'class': 'NetworkTopologyStrategy', " + " 'beijing': 3, " + " 'shanghai': 3, " + " 'shenzhen': 3 " + "}"; session.execute(cql); session.execute("USE orgmsg_backup"); }
public static void createOptimizedTables(Session session) { String messagesTable = "CREATE TABLE IF NOT EXISTS messages (" + "id text PRIMARY KEY, " + "content text, " + "timestamp timestamp, " + "source text, " + "destination text, " + "shard_id text " + ") WITH CLUSTERING ORDER BY (timestamp DESC)"; String messagesByTime = "CREATE TABLE IF NOT EXISTS messages_by_time (" + "date text, " + "hour int, " + "id text, " + "content text, " + "timestamp timestamp, " + "source text, " + "destination text, " + "PRIMARY KEY ((date, hour), timestamp, id) " + ") WITH CLUSTERING ORDER BY (timestamp DESC)"; String messagesBySource = "CREATE TABLE IF NOT EXISTS messages_by_source (" + "source text, " + "id text, " + "content text, " + "timestamp timestamp, " + "destination text, " + "PRIMARY KEY (source, timestamp, id) " + ") WITH CLUSTERING ORDER BY (timestamp DESC)"; session.execute(messagesTable); session.execute(messagesByTime); session.execute(messagesBySource); createIndexes(session); }
private static void createIndexes(Session session) { session.execute("CREATE INDEX IF NOT EXISTS idx_messages_source ON messages (source)"); session.execute("CREATE INDEX IF NOT EXISTS idx_messages_destination ON messages (destination)"); session.execute("CREATE INDEX IF NOT EXISTS idx_messages_timestamp ON messages (timestamp)"); }
public static void configureCompression(Session session) { String alterTable = "ALTER TABLE messages WITH " + "compression = { " + " 'class': 'LZ4Compressor', " + " 'chunk_length_in_kb': 64 " + "}"; session.execute(alterTable); }
public static void configureTTL(Session session) { String alterTable = "ALTER TABLE messages WITH default_time_to_live = 2592000"; session.execute(alterTable); } }
|
流程过程优化
1. 数据写入流程
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
| @Service public class DataWriteFlowOptimization { private static final Logger logger = LoggerFactory.getLogger(DataWriteFlowOptimization.class); @Autowired private CassandraStorageOptimization storageOptimization; @Autowired private MessageValidationService validationService; @Autowired private MessageRoutingService routingService;
public void optimizedWriteFlow(OrgMessage message) { logger.info("开始处理消息: {}", message.getId()); try { if (!validationService.validateMessage(message)) { logger.warn("消息验证失败: {}", message.getId()); return; } String targetShard = routingService.routeMessage(message); message.setShardId(targetShard); CompletableFuture<Void> writeFuture = storageOptimization.asyncInsert(message); writeFuture.whenComplete((result, throwable) -> { if (throwable != null) { logger.error("消息写入失败: {}", message.getId(), throwable); handleWriteFailure(message, throwable); } else { logger.info("消息写入成功: {}", message.getId()); handleWriteSuccess(message); } }); } catch (Exception e) { logger.error("数据写入流程异常: {}", e.getMessage(), e); handleWriteFailure(message, e); } }
public void batchWriteFlow(List<OrgMessage> messages) { logger.info("开始批量处理 {} 条消息", messages.size()); List<OrgMessage> validMessages = messages.stream() .filter(validationService::validateMessage) .collect(Collectors.toList()); if (validMessages.size() != messages.size()) { logger.warn("有 {} 条消息验证失败", messages.size() - validMessages.size()); } validMessages.forEach(message -> { String targetShard = routingService.routeMessage(message); message.setShardId(targetShard); }); storageOptimization.optimizedBatchInsert(validMessages); logger.info("批量处理完成"); }
private void handleWriteSuccess(OrgMessage message) { updateWriteStatistics(message); sendSuccessNotification(message); }
private void handleWriteFailure(OrgMessage message, Throwable throwable) { logger.error("消息写入失败: {}", message.getId(), throwable); if (shouldRetry(message, throwable)) { scheduleRetry(message); } else { sendFailureNotification(message, throwable); } }
private boolean shouldRetry(OrgMessage message, Throwable throwable) { int retryCount = message.getRetryCount(); if (retryCount >= 3) { return false; } if (throwable instanceof UnavailableException) { return true; } if (throwable instanceof WriteTimeoutException) { return true; } return false; }
private void scheduleRetry(OrgMessage message) { message.setRetryCount(message.getRetryCount() + 1); CompletableFuture.delayedExecutor(1000 * message.getRetryCount(), TimeUnit.MILLISECONDS) .execute(() -> optimizedWriteFlow(message)); }
private void updateWriteStatistics(OrgMessage message) { logger.debug("更新写入统计: {}", message.getId()); }
private void sendSuccessNotification(OrgMessage message) { logger.debug("发送成功通知: {}", message.getId()); }
private void sendFailureNotification(OrgMessage message, Throwable throwable) { logger.debug("发送失败通知: {}", message.getId()); } }
|
2. 数据读取流程
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
| @Service public class DataReadFlowOptimization { private static final Logger logger = LoggerFactory.getLogger(DataReadFlowOptimization.class); @Autowired private CassandraStorageOptimization storageOptimization; @Autowired private CacheService cacheService;
public List<OrgMessage> optimizedReadFlow(String queryId, int limit) { logger.info("开始查询消息: {}", queryId); try { List<OrgMessage> cachedMessages = cacheService.getFromCache(queryId); if (cachedMessages != null && !cachedMessages.isEmpty()) { logger.info("从缓存获取到 {} 条消息", cachedMessages.size()); return cachedMessages; } List<OrgMessage> messages = storageOptimization.optimizedQuery(queryId, limit); if (!messages.isEmpty()) { cacheService.putToCache(queryId, messages); } logger.info("查询完成,返回 {} 条消息", messages.size()); return messages; } catch (Exception e) { logger.error("数据读取流程异常: {}", e.getMessage(), e); throw new RuntimeException("数据读取失败", e); } }
public PageResult<OrgMessage> paginatedReadFlow(String queryId, int page, int size) { logger.info("开始分页查询: page={}, size={}", page, size); try { int offset = page * size; List<OrgMessage> messages = storageOptimization.optimizedQuery(queryId, size); PageResult<OrgMessage> result = new PageResult<>(); result.setData(messages); result.setPage(page); result.setSize(size); result.setTotal(messages.size()); logger.info("分页查询完成"); return result; } catch (Exception e) { logger.error("分页查询异常: {}", e.getMessage(), e); throw new RuntimeException("分页查询失败", e); } }
public static class PageResult<T> { private List<T> data; private int page; private int size; private long total; public List<T> getData() { return data; } public void setData(List<T> data) { this.data = data; } public int getPage() { return page; } public void setPage(int page) { this.page = page; } public int getSize() { return size; } public void setSize(int size) { this.size = size; } public long getTotal() { return total; } public void setTotal(long total) { this.total = total; } } }
|
使用示例和最佳实践
1. 完整使用示例
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
| @RestController @RequestMapping("/api/orgmsg") public class OrgMessageController { private static final Logger logger = LoggerFactory.getLogger(OrgMessageController.class); @Autowired private DataWriteFlowOptimization writeFlowOptimization; @Autowired private DataReadFlowOptimization readFlowOptimization;
@PostMapping("/write") public ResponseEntity<String> writeMessage(@RequestBody OrgMessage message) { try { writeFlowOptimization.optimizedWriteFlow(message); return ResponseEntity.ok("消息写入成功"); } catch (Exception e) { logger.error("消息写入失败: {}", e.getMessage(), e); return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR) .body("消息写入失败: " + e.getMessage()); } }
@PostMapping("/batch-write") public ResponseEntity<String> batchWriteMessages(@RequestBody List<OrgMessage> messages) { try { writeFlowOptimization.batchWriteFlow(messages); return ResponseEntity.ok("批量消息写入成功"); } catch (Exception e) { logger.error("批量消息写入失败: {}", e.getMessage(), e); return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR) .body("批量消息写入失败: " + e.getMessage()); } }
@GetMapping("/query/{queryId}") public ResponseEntity<List<OrgMessage>> queryMessages( @PathVariable String queryId, @RequestParam(defaultValue = "100") int limit) { try { List<OrgMessage> messages = readFlowOptimization.optimizedReadFlow(queryId, limit); return ResponseEntity.ok(messages); } catch (Exception e) { logger.error("消息查询失败: {}", e.getMessage(), e); return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR).body(null); } }
@GetMapping("/query/{queryId}/page") public ResponseEntity<PageResult<OrgMessage>> queryMessagesWithPagination( @PathVariable String queryId, @RequestParam(defaultValue = "0") int page, @RequestParam(defaultValue = "20") int size) { try { PageResult<OrgMessage> result = readFlowOptimization.paginatedReadFlow(queryId, page, size); return ResponseEntity.ok(result); } catch (Exception e) { logger.error("分页查询失败: {}", e.getMessage(), e); return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR).body(null); } } }
|
2. 最佳实践总结
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
| public class BestPracticesSummary {
public static void summarizeBestPractices() { System.out.println("=== 云服务机房分布式优化最佳实践 ==="); System.out.println("\n1. 架构设计最佳实践:"); System.out.println(" - 多机房部署,保证高可用"); System.out.println(" - 数据分片,提高性能"); System.out.println(" - 负载均衡,优化资源利用"); System.out.println(" - 故障转移,保证服务连续性"); System.out.println("\n2. 存储优化最佳实践:"); System.out.println(" - 合理设计数据模型"); System.out.println(" - 优化连接池配置"); System.out.println(" - 使用批量操作"); System.out.println(" - 配置适当的重试策略"); System.out.println("\n3. 性能优化最佳实践:"); System.out.println(" - 使用异步操作"); System.out.println(" - 实现缓存机制"); System.out.println(" - 优化查询语句"); System.out.println(" - 监控系统性能"); System.out.println("\n4. 运维最佳实践:"); System.out.println(" - 完善的监控体系"); System.out.println(" - 自动化部署"); System.out.println(" - 定期备份"); System.out.println(" - 故障演练"); }
public static void performanceMetrics() { System.out.println("\n=== 性能监控指标 ==="); System.out.println("1. 写入性能指标:"); System.out.println(" - 写入延迟 (Write Latency)"); System.out.println(" - 写入吞吐量 (Write Throughput)"); System.out.println(" - 写入成功率 (Write Success Rate)"); System.out.println("\n2. 读取性能指标:"); System.out.println(" - 读取延迟 (Read Latency)"); System.out.println(" - 读取吞吐量 (Read Throughput)"); System.out.println(" - 缓存命中率 (Cache Hit Rate)"); System.out.println("\n3. 系统资源指标:"); System.out.println(" - CPU使用率"); System.out.println(" - 内存使用率"); System.out.println(" - 磁盘I/O"); System.out.println(" - 网络带宽"); System.out.println("\n4. 业务指标:"); System.out.println(" - 消息处理量"); System.out.println(" - 错误率"); System.out.println(" - 响应时间"); System.out.println(" - 可用性"); } }
|
总结
云服务机房分布式代码优化是一个系统性工程,需要从架构设计、存储优化、流程优化等多个维度进行综合考虑:
- 架构设计:多机房部署、数据分片、负载均衡
- 存储优化:Cassandra配置优化、数据模型设计、批量操作
- 流程优化:异步处理、缓存机制、重试策略
- 性能监控:完善的监控体系、性能指标、告警机制
通过系统性的优化,可以构建高可用、高性能的分布式系统,为企业业务发展提供强有力的技术支撑。
参考资料
- 《Cassandra权威指南》
- 《分布式系统概念与设计》
- 《云原生应用架构实践》
- 《高性能MySQL》
- Apache Cassandra官方文档