1. 物流业务AI智能化概述

随着电商行业的快速发展和消费者对物流效率要求的不断提高,传统物流业务面临着成本上升、效率低下、资源浪费等挑战。AI技术的引入为物流行业带来了革命性的变化,通过智能调度、路径优化、需求预测等技术,实现了物流业务的自动化智能化升级。本文将详细介绍物流业务中AI技术的应用场景、实现方案以及生产级解决方案。

1.1 物流业务面临的挑战

  1. 成本控制: 燃油成本、人力成本、仓储成本持续上升
  2. 效率提升: 传统调度方式效率低下,资源利用率不高
  3. 客户体验: 配送时效性要求越来越高
  4. 资源优化: 车辆、人员、仓库等资源分配不合理
  5. 风险管控: 天气、交通、突发事件等风险因素影响

1.2 AI在物流业务中的应用场景

智能调度系统

  • 车辆调度: 基于实时路况和订单分布的最优车辆分配
  • 人员调度: 根据工作量和技能匹配的最优人员安排
  • 任务分配: 智能化的订单分配和任务优先级排序
  • 资源协调: 多维度资源的协调配置和动态调整

路径优化算法

  • 最短路径: 基于距离、时间、成本的最优路径规划
  • 多目标优化: 同时考虑时间、成本、服务质量等多个目标
  • 动态路径: 实时调整路径以应对交通状况变化
  • 约束优化: 考虑车辆载重、时间窗口等约束条件

需求预测分析

  • 销量预测: 基于历史数据和市场趋势的销量预测
  • 库存优化: 智能化的库存管理和补货策略
  • 需求波动: 预测节假日、促销等特殊时期的需求变化
  • 季节性分析: 分析季节性需求模式和趋势

智能仓储管理

  • 货位优化: 基于商品特性和存取频率的货位分配
  • 拣货路径: 最优的拣货路径规划和任务排序
  • 库存监控: 实时库存监控和异常预警
  • 自动化设备: 机器人和自动化设备的智能控制

1.3 AI技术架构

1
2
3
4
5
6
7
8
9
10
11
12
13
┌─────────────────────────────────────────┐
│ 业务应用层 │
│ (智能调度、路径优化、需求预测、仓储管理) │
├─────────────────────────────────────────┤
│ AI算法层 │
│ (机器学习、深度学习、优化算法、预测模型) │
├─────────────────────────────────────────┤
│ 数据处理层 │
│ (数据清洗、特征工程、数据融合、实时处理) │
├─────────────────────────────────────────┤
│ 数据采集层 │
│ (订单数据、GPS数据、交通数据、历史数据) │
└─────────────────────────────────────────┘

2. 智能调度系统实战

2.1 车辆调度优化算法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# 车辆调度优化算法实现
import numpy as np
import pandas as pd
from scipy.optimize import minimize
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

class VehicleSchedulingOptimizer:
def __init__(self, vehicles, orders, constraints):
self.vehicles = vehicles # 车辆信息
self.orders = orders # 订单信息
self.constraints = constraints # 约束条件

def calculate_distance(self, point1, point2):
"""计算两点间距离"""
return np.sqrt((point1[0] - point2[0])**2 + (point1[1] - point2[1])**2)

def calculate_cost(self, vehicle, order_sequence):
"""计算车辆调度成本"""
total_distance = 0
total_time = 0
current_location = vehicle['depot']
current_time = vehicle['start_time']

for order_id in order_sequence:
order = self.orders[order_id]
distance = self.calculate_distance(current_location, order['pickup_location'])
travel_time = distance / vehicle['speed']

# 检查时间窗口约束
if current_time + travel_time > order['pickup_deadline']:
return float('inf') # 违反时间窗口约束

total_distance += distance
total_time += travel_time + order['service_time']
current_location = order['delivery_location']
current_time += travel_time + order['service_time']

# 返回仓库
return_distance = self.calculate_distance(current_location, vehicle['depot'])
total_distance += return_distance

# 成本函数:距离成本 + 时间成本 + 超时惩罚
cost = (total_distance * vehicle['fuel_cost'] +
total_time * vehicle['time_cost'])

return cost

def optimize_single_vehicle(self, vehicle_id):
"""单车辆优化"""
vehicle = self.vehicles[vehicle_id]
available_orders = [oid for oid in self.orders.keys()
if self.orders[oid]['weight'] <= vehicle['capacity']]

if not available_orders:
return []

# 使用贪心算法进行初始解
current_location = vehicle['depot']
current_time = vehicle['start_time']
assigned_orders = []

while available_orders:
best_order = None
best_cost = float('inf')

for order_id in available_orders:
order = self.orders[order_id]
distance = self.calculate_distance(current_location, order['pickup_location'])
travel_time = distance / vehicle['speed']

if current_time + travel_time <= order['pickup_deadline']:
cost = distance + order['service_time']
if cost < best_cost:
best_cost = cost
best_order = order_id

if best_order is None:
break

assigned_orders.append(best_order)
available_orders.remove(best_order)

# 更新当前位置和时间
order = self.orders[best_order]
distance = self.calculate_distance(current_location, order['pickup_location'])
travel_time = distance / vehicle['speed']
current_time += travel_time + order['service_time']
current_location = order['delivery_location']

return assigned_orders

def optimize_all_vehicles(self):
"""多车辆优化"""
vehicle_assignments = {}
remaining_orders = set(self.orders.keys())

for vehicle_id in self.vehicles.keys():
# 为每辆车分配订单
assigned_orders = self.optimize_single_vehicle(vehicle_id)
vehicle_assignments[vehicle_id] = assigned_orders

# 从剩余订单中移除已分配的订单
remaining_orders -= set(assigned_orders)

# 处理未分配的订单
if remaining_orders:
print(f"警告: {len(remaining_orders)} 个订单未分配")

return vehicle_assignments

# 使用示例
vehicles = {
'v1': {'capacity': 1000, 'speed': 50, 'fuel_cost': 0.5, 'time_cost': 0.1,
'depot': (0, 0), 'start_time': 0},
'v2': {'capacity': 800, 'speed': 45, 'fuel_cost': 0.6, 'time_cost': 0.12,
'depot': (0, 0), 'start_time': 0}
}

orders = {
'o1': {'pickup_location': (10, 20), 'delivery_location': (30, 40),
'weight': 200, 'service_time': 30, 'pickup_deadline': 120},
'o2': {'pickup_location': (15, 25), 'delivery_location': (35, 45),
'weight': 300, 'service_time': 45, 'pickup_deadline': 180},
'o3': {'pickup_location': (20, 30), 'delivery_location': (40, 50),
'weight': 150, 'service_time': 25, 'pickup_deadline': 150}
}

constraints = {'max_working_hours': 8, 'max_distance': 200}

optimizer = VehicleSchedulingOptimizer(vehicles, orders, constraints)
assignments = optimizer.optimize_all_vehicles()
print("车辆调度结果:", assignments)

2.2 人员调度优化

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# 人员调度优化算法
class PersonnelSchedulingOptimizer:
def __init__(self, personnel, tasks, skills_matrix):
self.personnel = personnel # 人员信息
self.tasks = tasks # 任务信息
self.skills_matrix = skills_matrix # 技能匹配矩阵

def calculate_task_score(self, person_id, task_id):
"""计算人员任务匹配度"""
person = self.personnel[person_id]
task = self.tasks[task_id]

# 技能匹配度
skill_score = self.skills_matrix[person_id][task_id]

# 工作负载平衡
workload_score = 1.0 / (person['current_workload'] + 1)

# 距离因素
distance = self.calculate_distance(person['location'], task['location'])
distance_score = 1.0 / (distance + 1)

# 综合评分
total_score = (skill_score * 0.5 +
workload_score * 0.3 +
distance_score * 0.2)

return total_score

def optimize_personnel_assignment(self):
"""人员任务分配优化"""
assignments = {}
remaining_tasks = set(self.tasks.keys())

# 按任务优先级排序
sorted_tasks = sorted(self.tasks.items(),
key=lambda x: x[1]['priority'],
reverse=True)

for task_id, task in sorted_tasks:
if task_id not in remaining_tasks:
continue

best_person = None
best_score = 0

# 找到最适合的人员
for person_id in self.personnel.keys():
if self.can_assign_task(person_id, task_id):
score = self.calculate_task_score(person_id, task_id)
if score > best_score:
best_score = score
best_person = person_id

if best_person:
assignments[task_id] = best_person
remaining_tasks.remove(task_id)

# 更新人员工作负载
self.personnel[best_person]['current_workload'] += task['workload']

return assignments

def can_assign_task(self, person_id, task_id):
"""检查是否可以分配任务"""
person = self.personnel[person_id]
task = self.tasks[task_id]

# 检查技能要求
if self.skills_matrix[person_id][task_id] < task['min_skill_level']:
return False

# 检查工作负载
if person['current_workload'] + task['workload'] > person['max_workload']:
return False

# 检查时间冲突
if self.has_time_conflict(person_id, task_id):
return False

return True

def has_time_conflict(self, person_id, task_id):
"""检查时间冲突"""
person = self.personnel[person_id]
task = self.tasks[task_id]

for assigned_task in person['assigned_tasks']:
if (task['start_time'] < assigned_task['end_time'] and
task['end_time'] > assigned_task['start_time']):
return True

return False

# 使用示例
personnel = {
'p1': {'location': (0, 0), 'current_workload': 0, 'max_workload': 100,
'assigned_tasks': []},
'p2': {'location': (5, 5), 'current_workload': 20, 'max_workload': 80,
'assigned_tasks': []}
}

tasks = {
't1': {'location': (10, 10), 'workload': 30, 'priority': 1,
'min_skill_level': 0.7, 'start_time': 0, 'end_time': 120},
't2': {'location': (15, 15), 'workload': 25, 'priority': 2,
'min_skill_level': 0.5, 'start_time': 60, 'end_time': 180}
}

skills_matrix = {
'p1': {'t1': 0.8, 't2': 0.6},
'p2': {'t1': 0.7, 't2': 0.9}
}

personnel_optimizer = PersonnelSchedulingOptimizer(personnel, tasks, skills_matrix)
assignments = personnel_optimizer.optimize_personnel_assignment()
print("人员调度结果:", assignments)

3. 路径优化算法实战

3.1 基于遗传算法的路径优化

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# 遗传算法路径优化
import random
import copy

class GeneticAlgorithmOptimizer:
def __init__(self, locations, distance_matrix, population_size=100,
generations=1000, mutation_rate=0.1):
self.locations = locations
self.distance_matrix = distance_matrix
self.population_size = population_size
self.generations = generations
self.mutation_rate = mutation_rate

def create_individual(self):
"""创建个体(路径)"""
individual = list(range(1, len(self.locations)))
random.shuffle(individual)
return [0] + individual + [0] # 从仓库出发,回到仓库

def calculate_fitness(self, individual):
"""计算适应度(路径总距离)"""
total_distance = 0
for i in range(len(individual) - 1):
total_distance += self.distance_matrix[individual[i]][individual[i + 1]]
return 1.0 / total_distance # 距离越小,适应度越高

def crossover(self, parent1, parent2):
"""交叉操作"""
size = len(parent1)
start, end = sorted(random.sample(range(1, size - 1), 2))

child1 = [None] * size
child2 = [None] * size

# 复制中间段
child1[start:end] = parent1[start:end]
child2[start:end] = parent2[start:end]

# 填充剩余位置
self.fill_remaining(child1, parent2, start, end)
self.fill_remaining(child2, parent1, start, end)

return child1, child2

def fill_remaining(self, child, parent, start, end):
"""填充剩余位置"""
size = len(child)
used = set(child[start:end])

for i in range(size):
if child[i] is None:
for city in parent:
if city not in used:
child[i] = city
used.add(city)
break

def mutate(self, individual):
"""变异操作"""
if random.random() < self.mutation_rate:
size = len(individual)
i, j = random.sample(range(1, size - 1), 2)
individual[i], individual[j] = individual[j], individual[i]

def optimize(self):
"""遗传算法优化"""
# 初始化种群
population = [self.create_individual() for _ in range(self.population_size)]

best_individual = None
best_fitness = 0

for generation in range(self.generations):
# 计算适应度
fitness_scores = [self.calculate_fitness(individual) for individual in population]

# 找到最佳个体
max_fitness = max(fitness_scores)
if max_fitness > best_fitness:
best_fitness = max_fitness
best_individual = population[fitness_scores.index(max_fitness)].copy()

# 选择、交叉、变异
new_population = []

# 精英保留
elite_size = self.population_size // 10
elite_indices = sorted(range(len(fitness_scores)),
key=lambda i: fitness_scores[i],
reverse=True)[:elite_size]

for i in elite_indices:
new_population.append(population[i].copy())

# 生成新个体
while len(new_population) < self.population_size:
# 选择父代
parent1 = self.tournament_selection(population, fitness_scores)
parent2 = self.tournament_selection(population, fitness_scores)

# 交叉
child1, child2 = self.crossover(parent1, parent2)

# 变异
self.mutate(child1)
self.mutate(child2)

new_population.extend([child1, child2])

population = new_population[:self.population_size]

if generation % 100 == 0:
print(f"Generation {generation}: Best fitness = {best_fitness:.6f}")

return best_individual, best_fitness

def tournament_selection(self, population, fitness_scores, tournament_size=5):
"""锦标赛选择"""
tournament_indices = random.sample(range(len(population)), tournament_size)
tournament_fitness = [fitness_scores[i] for i in tournament_indices]
winner_index = tournament_indices[tournament_fitness.index(max(tournament_fitness))]
return population[winner_index]

# 使用示例
locations = [(0, 0), (10, 20), (30, 40), (50, 60), (70, 80)]
distance_matrix = [
[0, 22, 50, 78, 106],
[22, 0, 28, 56, 84],
[50, 28, 0, 28, 56],
[78, 56, 28, 0, 28],
[106, 84, 56, 28, 0]
]

ga_optimizer = GeneticAlgorithmOptimizer(locations, distance_matrix)
best_path, best_fitness = ga_optimizer.optimize()
print("最优路径:", best_path)
print("最优适应度:", best_fitness)

3.2 动态路径规划

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# 动态路径规划算法
import heapq
from collections import defaultdict

class DynamicPathPlanner:
def __init__(self, graph, traffic_data):
self.graph = graph # 路网图
self.traffic_data = traffic_data # 实时交通数据

def get_edge_weight(self, from_node, to_node, current_time):
"""获取边的权重(考虑实时交通)"""
base_weight = self.graph[from_node][to_node]['distance']

# 获取当前时间的交通状况
traffic_factor = self.traffic_data.get_traffic_factor(from_node, to_node, current_time)

# 计算实际权重
actual_weight = base_weight * traffic_factor

return actual_weight

def dijkstra_with_time(self, start, end, start_time):
"""带时间约束的Dijkstra算法"""
distances = defaultdict(lambda: float('inf'))
distances[(start, start_time)] = 0

pq = [(0, start, start_time)]
visited = set()
parent = {}

while pq:
current_dist, current_node, current_time = heapq.heappop(pq)

if (current_node, current_time) in visited:
continue

visited.add((current_node, current_time))

if current_node == end:
break

# 探索邻居节点
for neighbor in self.graph[current_node]:
edge_weight = self.get_edge_weight(current_node, neighbor, current_time)
travel_time = edge_weight / 50 # 假设平均速度50km/h

new_time = current_time + travel_time
new_dist = current_dist + edge_weight

if new_dist < distances[(neighbor, new_time)]:
distances[(neighbor, new_time)] = new_dist
parent[(neighbor, new_time)] = (current_node, current_time)
heapq.heappush(pq, (new_dist, neighbor, new_time))

# 重构路径
path = []
current = (end, min([t for (n, t) in distances.keys() if n == end],
key=lambda t: distances[(end, t)]))

while current in parent:
path.append(current[0])
current = parent[current]

path.append(start)
path.reverse()

return path, distances[(end, path[-1])]

def adaptive_route_planning(self, start, end, start_time, max_detours=3):
"""自适应路径规划"""
best_path = None
best_cost = float('inf')

# 获取初始路径
initial_path, initial_cost = self.dijkstra_with_time(start, end, start_time)

if initial_cost < best_cost:
best_path = initial_path
best_cost = initial_cost

# 尝试绕行路径
for detour_count in range(1, max_detours + 1):
detour_path = self.find_detour_path(start, end, start_time, detour_count)
if detour_path:
detour_cost = self.calculate_path_cost(detour_path, start_time)
if detour_cost < best_cost:
best_path = detour_path
best_cost = detour_cost

return best_path, best_cost

def find_detour_path(self, start, end, start_time, detour_count):
"""寻找绕行路径"""
# 实现绕行路径查找逻辑
# 这里简化实现
return None

def calculate_path_cost(self, path, start_time):
"""计算路径总成本"""
total_cost = 0
current_time = start_time

for i in range(len(path) - 1):
edge_weight = self.get_edge_weight(path[i], path[i + 1], current_time)
total_cost += edge_weight
travel_time = edge_weight / 50
current_time += travel_time

return total_cost

# 实时交通数据类
class TrafficData:
def __init__(self):
self.traffic_factors = defaultdict(lambda: defaultdict(lambda: 1.0))

def update_traffic_factor(self, from_node, to_node, time, factor):
"""更新交通因子"""
self.traffic_factors[(from_node, to_node)][time] = factor

def get_traffic_factor(self, from_node, to_node, time):
"""获取交通因子"""
return self.traffic_factors[(from_node, to_node)][time]

# 使用示例
graph = {
'A': {'B': {'distance': 10}, 'C': {'distance': 15}},
'B': {'A': {'distance': 10}, 'D': {'distance': 20}},
'C': {'A': {'distance': 15}, 'D': {'distance': 25}},
'D': {'B': {'distance': 20}, 'C': {'distance': 25}}
}

traffic_data = TrafficData()
# 模拟交通拥堵
traffic_data.update_traffic_factor('A', 'B', 8, 2.0) # 早高峰拥堵

planner = DynamicPathPlanner(graph, traffic_data)
path, cost = planner.dijkstra_with_time('A', 'D', 8)
print("动态路径:", path)
print("路径成本:", cost)

4. 需求预测分析实战

4.1 基于时间序列的需求预测

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# 时间序列需求预测
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt

class DemandForecaster:
def __init__(self):
self.models = {}
self.scalers = {}
self.feature_columns = []

def prepare_features(self, data):
"""特征工程"""
df = data.copy()

# 时间特征
df['year'] = df['date'].dt.year
df['month'] = df['date'].dt.month
df['day'] = df['date'].dt.day
df['dayofweek'] = df['date'].dt.dayofweek
df['is_weekend'] = df['dayofweek'].isin([5, 6]).astype(int)

# 滞后特征
for lag in [1, 7, 14, 30]:
df[f'demand_lag_{lag}'] = df['demand'].shift(lag)

# 移动平均特征
for window in [7, 14, 30]:
df[f'demand_ma_{window}'] = df['demand'].rolling(window=window).mean()

# 趋势特征
df['demand_trend'] = df['demand'].diff()

# 季节性特征
df['month_sin'] = np.sin(2 * np.pi * df['month'] / 12)
df['month_cos'] = np.cos(2 * np.pi * df['month'] / 12)
df['day_sin'] = np.sin(2 * np.pi * df['day'] / 31)
df['day_cos'] = np.cos(2 * np.pi * df['day'] / 31)

self.feature_columns = [col for col in df.columns
if col not in ['date', 'demand']]

return df

def train_model(self, data, model_type='random_forest'):
"""训练预测模型"""
df = self.prepare_features(data)

# 移除缺失值
df = df.dropna()

X = df[self.feature_columns]
y = df['demand']

# 标准化特征
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 训练模型
if model_type == 'linear':
model = LinearRegression()
elif model_type == 'random_forest':
model = RandomForestRegressor(n_estimators=100, random_state=42)
else:
raise ValueError("不支持的模型类型")

model.fit(X_scaled, y)

# 保存模型和标准化器
self.models[model_type] = model
self.scalers[model_type] = scaler

return model, scaler

def predict(self, data, model_type='random_forest', horizon=7):
"""预测未来需求"""
if model_type not in self.models:
raise ValueError("模型未训练")

model = self.models[model_type]
scaler = self.scalers[model_type]

predictions = []
current_data = data.copy()

for _ in range(horizon):
# 准备特征
df = self.prepare_features(current_data)
latest_features = df[self.feature_columns].iloc[-1:].values

# 标准化
latest_features_scaled = scaler.transform(latest_features)

# 预测
pred = model.predict(latest_features_scaled)[0]
predictions.append(pred)

# 更新数据用于下次预测
new_date = current_data['date'].iloc[-1] + pd.Timedelta(days=1)
new_row = pd.DataFrame({
'date': [new_date],
'demand': [pred]
})
current_data = pd.concat([current_data, new_row], ignore_index=True)

return predictions

def evaluate_model(self, data, model_type='random_forest', test_size=0.2):
"""评估模型性能"""
df = self.prepare_features(data)
df = df.dropna()

split_idx = int(len(df) * (1 - test_size))
train_data = df[:split_idx]
test_data = df[split_idx:]

# 训练模型
self.train_model(train_data, model_type)

# 预测测试集
X_test = test_data[self.feature_columns]
y_test = test_data['demand']

scaler = self.scalers[model_type]
X_test_scaled = scaler.transform(X_test)

model = self.models[model_type]
y_pred = model.predict(X_test_scaled)

# 计算评估指标
mae = np.mean(np.abs(y_test - y_pred))
mse = np.mean((y_test - y_pred) ** 2)
rmse = np.sqrt(mse)
mape = np.mean(np.abs((y_test - y_pred) / y_test)) * 100

return {
'MAE': mae,
'MSE': mse,
'RMSE': rmse,
'MAPE': mape
}

# 使用示例
# 生成模拟数据
dates = pd.date_range('2023-01-01', '2023-12-31', freq='D')
np.random.seed(42)
demand = 100 + 20 * np.sin(2 * np.pi * np.arange(len(dates)) / 365) + np.random.normal(0, 10, len(dates))
demand = np.maximum(demand, 0) # 确保需求非负

data = pd.DataFrame({
'date': dates,
'demand': demand
})

# 创建预测器
forecaster = DemandForecaster()

# 训练模型
forecaster.train_model(data, 'random_forest')

# 预测未来7天需求
predictions = forecaster.predict(data, 'random_forest', 7)
print("未来7天需求预测:", predictions)

# 评估模型
evaluation = forecaster.evaluate_model(data, 'random_forest')
print("模型评估结果:", evaluation)

4.2 多因素需求预测模型

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# 多因素需求预测模型
class MultiFactorDemandForecaster:
def __init__(self):
self.models = {}
self.feature_importance = {}

def prepare_multi_factor_features(self, data):
"""多因素特征工程"""
df = data.copy()

# 基础时间特征
df['year'] = df['date'].dt.year
df['month'] = df['date'].dt.month
df['day'] = df['date'].dt.day
df['dayofweek'] = df['date'].dt.dayofweek
df['is_weekend'] = df['dayofweek'].isin([5, 6]).astype(int)

# 天气特征
df['temperature_ma7'] = df['temperature'].rolling(7).mean()
df['rainfall_ma7'] = df['rainfall'].rolling(7).mean()
df['weather_score'] = df['temperature'] / 30 - df['rainfall'] / 10

# 促销特征
df['promotion_intensity'] = df['promotion_discount'] * df['promotion_duration']
df['is_promotion'] = (df['promotion_discount'] > 0).astype(int)

# 竞争对手特征
df['competitor_price_ratio'] = df['competitor_price'] / df['our_price']
df['price_advantage'] = (df['competitor_price'] - df['our_price']) / df['our_price']

# 经济指标特征
df['gdp_growth_ma30'] = df['gdp_growth'].rolling(30).mean()
df['inflation_ma30'] = df['inflation'].rolling(30).mean()

# 社交媒体特征
df['social_mention_ma7'] = df['social_mention'].rolling(7).mean()
df['sentiment_score_ma7'] = df['sentiment_score'].rolling(7).mean()

# 滞后特征
for lag in [1, 7, 14, 30]:
df[f'demand_lag_{lag}'] = df['demand'].shift(lag)
df[f'price_lag_{lag}'] = df['our_price'].shift(lag)

# 交互特征
df['price_weather_interaction'] = df['our_price'] * df['weather_score']
df['promotion_weather_interaction'] = df['promotion_intensity'] * df['weather_score']

self.feature_columns = [col for col in df.columns
if col not in ['date', 'demand']]

return df

def train_ensemble_model(self, data):
"""训练集成模型"""
df = self.prepare_multi_factor_features(data)
df = df.dropna()

X = df[self.feature_columns]
y = df['demand']

# 训练多个模型
models = {
'random_forest': RandomForestRegressor(n_estimators=100, random_state=42),
'linear': LinearRegression(),
'gradient_boosting': GradientBoostingRegressor(n_estimators=100, random_state=42)
}

for name, model in models.items():
model.fit(X, y)
self.models[name] = model

# 计算特征重要性
if hasattr(model, 'feature_importances_'):
self.feature_importance[name] = dict(zip(self.feature_columns,
model.feature_importances_))

# 计算集成权重
self.ensemble_weights = self.calculate_ensemble_weights(data)

def calculate_ensemble_weights(self, data):
"""计算集成权重"""
df = self.prepare_multi_factor_features(data)
df = df.dropna()

split_idx = int(len(df) * 0.8)
train_data = df[:split_idx]
test_data = df[split_idx:]

X_test = test_data[self.feature_columns]
y_test = test_data['demand']

# 获取各模型的预测
predictions = {}
for name, model in self.models.items():
pred = model.predict(X_test)
predictions[name] = pred

# 优化权重
from scipy.optimize import minimize

def objective(weights):
ensemble_pred = sum(weights[i] * predictions[name]
for i, name in enumerate(self.models.keys()))
return np.mean((y_test - ensemble_pred) ** 2)

# 约束:权重和为1,权重非负
constraints = {'type': 'eq', 'fun': lambda w: np.sum(w) - 1}
bounds = [(0, 1) for _ in self.models.keys()]

result = minimize(objective, [1/len(self.models)] * len(self.models),
method='SLSQP', bounds=bounds, constraints=constraints)

return dict(zip(self.models.keys(), result.x))

def predict_ensemble(self, data, horizon=7):
"""集成预测"""
predictions = []
current_data = data.copy()

for _ in range(horizon):
# 准备特征
df = self.prepare_multi_factor_features(current_data)
latest_features = df[self.feature_columns].iloc[-1:].values

# 各模型预测
model_predictions = {}
for name, model in self.models.items():
pred = model.predict(latest_features)[0]
model_predictions[name] = pred

# 集成预测
ensemble_pred = sum(self.ensemble_weights[name] * pred
for name, pred in model_predictions.items())
predictions.append(ensemble_pred)

# 更新数据
new_date = current_data['date'].iloc[-1] + pd.Timedelta(days=1)
new_row = pd.DataFrame({
'date': [new_date],
'demand': [ensemble_pred]
})
current_data = pd.concat([current_data, new_row], ignore_index=True)

return predictions

def analyze_feature_importance(self):
"""分析特征重要性"""
importance_df = pd.DataFrame(self.feature_importance)
importance_df['average'] = importance_df.mean(axis=1)
importance_df = importance_df.sort_values('average', ascending=False)

return importance_df

# 使用示例
# 生成多因素模拟数据
np.random.seed(42)
n_days = 365
dates = pd.date_range('2023-01-01', periods=n_days, freq='D')

data = pd.DataFrame({
'date': dates,
'demand': 100 + 20 * np.sin(2 * np.pi * np.arange(n_days) / 365) + np.random.normal(0, 10, n_days),
'temperature': 20 + 10 * np.sin(2 * np.pi * np.arange(n_days) / 365) + np.random.normal(0, 3, n_days),
'rainfall': np.random.exponential(2, n_days),
'promotion_discount': np.random.choice([0, 0.1, 0.2, 0.3], n_days, p=[0.7, 0.15, 0.1, 0.05]),
'promotion_duration': np.random.choice([0, 3, 7, 14], n_days, p=[0.7, 0.15, 0.1, 0.05]),
'our_price': 100 + np.random.normal(0, 5, n_days),
'competitor_price': 105 + np.random.normal(0, 5, n_days),
'gdp_growth': np.random.normal(3, 1, n_days),
'inflation': np.random.normal(2, 0.5, n_days),
'social_mention': np.random.poisson(10, n_days),
'sentiment_score': np.random.normal(0.5, 0.2, n_days)
})

# 创建多因素预测器
multi_forecaster = MultiFactorDemandForecaster()

# 训练集成模型
multi_forecaster.train_ensemble_model(data)

# 预测未来7天需求
ensemble_predictions = multi_forecaster.predict_ensemble(data, 7)
print("集成预测结果:", ensemble_predictions)

# 分析特征重要性
importance = multi_forecaster.analyze_feature_importance()
print("特征重要性分析:")
print(importance.head(10))

5. 智能仓储管理系统

5.1 货位优化算法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# 货位优化算法
class WarehouseOptimizer:
def __init__(self, warehouse_layout, product_data):
self.warehouse_layout = warehouse_layout # 仓库布局
self.product_data = product_data # 商品数据

def calculate_pick_frequency(self, product_id, time_period=30):
"""计算商品拣货频率"""
# 基于历史数据计算拣货频率
pick_count = self.product_data[product_id]['pick_count']
return pick_count / time_period

def calculate_distance_cost(self, location1, location2):
"""计算货位间距离成本"""
x1, y1, z1 = location1
x2, y2, z2 = location2
return np.sqrt((x1-x2)**2 + (y1-y2)**2 + (z1-z2)**2)

def optimize_product_placement(self):
"""优化商品货位分配"""
# 按拣货频率排序商品
products_by_frequency = sorted(
self.product_data.items(),
key=lambda x: self.calculate_pick_frequency(x[0]),
reverse=True
)

# 获取可用货位
available_locations = self.get_available_locations()

# 分配货位
assignments = {}
location_index = 0

for product_id, product_info in products_by_frequency:
if location_index < len(available_locations):
location = available_locations[location_index]
assignments[product_id] = location
location_index += 1

return assignments

def optimize_pick_route(self, pick_list):
"""优化拣货路径"""
if not pick_list:
return []

# 添加起始点(拣货台)
start_location = (0, 0, 0)
locations = [start_location] + [self.get_product_location(pid) for pid in pick_list]

# 使用TSP算法优化路径
optimized_route = self.solve_tsp(locations)

# 移除起始点,返回商品拣货顺序
return [pick_list[i-1] for i in optimized_route[1:]]

def solve_tsp(self, locations):
"""解决旅行商问题"""
n = len(locations)
if n <= 2:
return list(range(n))

# 计算距离矩阵
distance_matrix = np.zeros((n, n))
for i in range(n):
for j in range(n):
distance_matrix[i][j] = self.calculate_distance_cost(
locations[i], locations[j]
)

# 使用贪心算法求解TSP
visited = [False] * n
route = [0]
visited[0] = True
current = 0

for _ in range(n - 1):
next_city = None
min_distance = float('inf')

for city in range(n):
if not visited[city] and distance_matrix[current][city] < min_distance:
min_distance = distance_matrix[current][city]
next_city = city

if next_city is not None:
route.append(next_city)
visited[next_city] = True
current = next_city

return route

def get_available_locations(self):
"""获取可用货位"""
# 简化实现,返回预定义的货位列表
locations = []
for x in range(10):
for y in range(10):
for z in range(5):
locations.append((x, y, z))
return locations

def get_product_location(self, product_id):
"""获取商品当前位置"""
# 简化实现
return self.product_data[product_id].get('location', (0, 0, 0))

# 使用示例
warehouse_layout = {
'width': 100,
'height': 100,
'depth': 50,
'pick_station': (0, 0, 0)
}

product_data = {
'p1': {'pick_count': 100, 'volume': 1, 'weight': 0.5},
'p2': {'pick_count': 80, 'volume': 2, 'weight': 1.0},
'p3': {'pick_count': 60, 'volume': 1.5, 'weight': 0.8},
'p4': {'pick_count': 40, 'volume': 3, 'weight': 2.0}
}

optimizer = WarehouseOptimizer(warehouse_layout, product_data)

# 优化货位分配
assignments = optimizer.optimize_product_placement()
print("货位分配结果:", assignments)

# 优化拣货路径
pick_list = ['p1', 'p2', 'p3', 'p4']
optimal_route = optimizer.optimize_pick_route(pick_list)
print("最优拣货路径:", optimal_route)

5.2 库存优化算法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# 库存优化算法
class InventoryOptimizer:
def __init__(self, demand_forecast, lead_time, holding_cost, shortage_cost):
self.demand_forecast = demand_forecast
self.lead_time = lead_time
self.holding_cost = holding_cost
self.shortage_cost = shortage_cost

def calculate_economic_order_quantity(self, annual_demand, ordering_cost):
"""计算经济订货量(EOQ)"""
eoq = np.sqrt(2 * annual_demand * ordering_cost / self.holding_cost)
return int(eoq)

def calculate_safety_stock(self, demand_std, service_level=0.95):
"""计算安全库存"""
z_score = 1.96 # 95%服务水平的Z值
safety_stock = z_score * demand_std * np.sqrt(self.lead_time)
return int(safety_stock)

def calculate_reorder_point(self, average_demand, demand_std, service_level=0.95):
"""计算再订货点"""
safety_stock = self.calculate_safety_stock(demand_std, service_level)
reorder_point = average_demand * self.lead_time + safety_stock
return int(reorder_point)

def optimize_inventory_levels(self, products):
"""优化库存水平"""
optimized_levels = {}

for product_id, product_info in products.items():
# 获取需求预测
forecast = self.demand_forecast.get(product_id, {})
annual_demand = forecast.get('annual_demand', 0)
demand_std = forecast.get('demand_std', 0)
ordering_cost = product_info.get('ordering_cost', 100)

# 计算最优库存参数
eoq = self.calculate_economic_order_quantity(annual_demand, ordering_cost)
safety_stock = self.calculate_safety_stock(demand_std)
reorder_point = self.calculate_reorder_point(
annual_demand / 365, demand_std
)

optimized_levels[product_id] = {
'eoq': eoq,
'safety_stock': safety_stock,
'reorder_point': reorder_point,
'max_inventory': eoq + safety_stock
}

return optimized_levels

def simulate_inventory_system(self, product_id, initial_inventory,
days=365, order_quantity=None):
"""模拟库存系统运行"""
if order_quantity is None:
order_quantity = self.calculate_economic_order_quantity(
self.demand_forecast[product_id]['annual_demand'],
100 # 默认订货成本
)

inventory = initial_inventory
total_cost = 0
stockouts = 0

for day in range(days):
# 生成当日需求
daily_demand = np.random.poisson(
self.demand_forecast[product_id]['annual_demand'] / 365
)

# 检查库存
if inventory >= daily_demand:
inventory -= daily_demand
total_cost += daily_demand * self.holding_cost
else:
stockouts += daily_demand - inventory
inventory = 0
total_cost += stockouts * self.shortage_cost

# 检查是否需要订货
if inventory <= self.calculate_reorder_point(
self.demand_forecast[product_id]['annual_demand'] / 365,
self.demand_forecast[product_id]['demand_std']
):
inventory += order_quantity
total_cost += 100 # 订货成本

return {
'total_cost': total_cost,
'stockouts': stockouts,
'service_level': 1 - stockouts / (self.demand_forecast[product_id]['annual_demand'])
}

# 使用示例
demand_forecast = {
'p1': {'annual_demand': 1000, 'demand_std': 50},
'p2': {'annual_demand': 800, 'demand_std': 40},
'p3': {'annual_demand': 600, 'demand_std': 30}
}

products = {
'p1': {'ordering_cost': 100, 'unit_cost': 10},
'p2': {'ordering_cost': 120, 'unit_cost': 15},
'p3': {'ordering_cost': 80, 'unit_cost': 8}
}

inventory_optimizer = InventoryOptimizer(
demand_forecast=demand_forecast,
lead_time=7,
holding_cost=0.1,
shortage_cost=5.0
)

# 优化库存水平
optimized_levels = inventory_optimizer.optimize_inventory_levels(products)
print("优化后的库存水平:", optimized_levels)

# 模拟库存系统
simulation_result = inventory_optimizer.simulate_inventory_system(
'p1', initial_inventory=100, days=365
)
print("库存系统模拟结果:", simulation_result)

6. 供应链优化系统

6.1 供应商选择优化

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# 供应商选择优化算法
class SupplierSelectionOptimizer:
def __init__(self, suppliers, criteria_weights):
self.suppliers = suppliers
self.criteria_weights = criteria_weights

def normalize_criteria(self, criteria_values):
"""标准化评价指标"""
normalized = {}
for criterion, values in criteria_values.items():
max_val = max(values.values())
min_val = min(values.values())
normalized[criterion] = {
supplier: (values[supplier] - min_val) / (max_val - min_val)
for supplier in values.keys()
}
return normalized

def calculate_weighted_score(self, supplier_id, normalized_criteria):
"""计算加权评分"""
total_score = 0
for criterion, weight in self.criteria_weights.items():
score = normalized_criteria[criterion][supplier_id]
total_score += weight * score
return total_score

def optimize_supplier_selection(self, demand_quantity, criteria_values):
"""优化供应商选择"""
# 标准化指标
normalized_criteria = self.normalize_criteria(criteria_values)

# 计算各供应商评分
supplier_scores = {}
for supplier_id in self.suppliers.keys():
score = self.calculate_weighted_score(supplier_id, normalized_criteria)
supplier_scores[supplier_id] = score

# 按评分排序
sorted_suppliers = sorted(supplier_scores.items(),
key=lambda x: x[1], reverse=True)

# 分配订单量
allocation = {}
remaining_demand = demand_quantity

for supplier_id, score in sorted_suppliers:
supplier = self.suppliers[supplier_id]
max_capacity = supplier['max_capacity']

if remaining_demand > 0:
allocated_quantity = min(remaining_demand, max_capacity)
allocation[supplier_id] = allocated_quantity
remaining_demand -= allocated_quantity

return allocation, supplier_scores

def multi_objective_optimization(self, demand_quantity, criteria_values):
"""多目标优化"""
from scipy.optimize import minimize

def objective(x):
# x是各供应商的分配比例
total_cost = 0
total_risk = 0

for i, supplier_id in enumerate(self.suppliers.keys()):
quantity = x[i] * demand_quantity
supplier = self.suppliers[supplier_id]

# 成本目标
total_cost += quantity * supplier['unit_cost']

# 风险目标
total_risk += quantity * supplier['risk_score']

# 多目标:最小化成本和风险
return total_cost + 0.1 * total_risk

# 约束条件
constraints = [
{'type': 'eq', 'fun': lambda x: np.sum(x) - 1}, # 分配比例和为1
]

bounds = [(0, 1) for _ in self.suppliers.keys()] # 分配比例在0-1之间

# 初始解
x0 = [1/len(self.suppliers)] * len(self.suppliers)

# 优化
result = minimize(objective, x0, method='SLSQP',
bounds=bounds, constraints=constraints)

# 转换为实际分配量
allocation = {}
for i, supplier_id in enumerate(self.suppliers.keys()):
allocation[supplier_id] = result.x[i] * demand_quantity

return allocation

# 使用示例
suppliers = {
's1': {'unit_cost': 10, 'max_capacity': 500, 'risk_score': 0.2},
's2': {'unit_cost': 12, 'max_capacity': 300, 'risk_score': 0.1},
's3': {'unit_cost': 8, 'max_capacity': 400, 'risk_score': 0.3}
}

criteria_weights = {
'cost': 0.4,
'quality': 0.3,
'delivery': 0.2,
'risk': 0.1
}

criteria_values = {
'cost': {'s1': 10, 's2': 12, 's3': 8},
'quality': {'s1': 0.9, 's2': 0.95, 's3': 0.85},
'delivery': {'s1': 0.8, 's2': 0.9, 's3': 0.7},
'risk': {'s1': 0.2, 's2': 0.1, 's3': 0.3}
}

optimizer = SupplierSelectionOptimizer(suppliers, criteria_weights)

# 优化供应商选择
allocation, scores = optimizer.optimize_supplier_selection(1000, criteria_values)
print("供应商分配结果:", allocation)
print("供应商评分:", scores)

# 多目标优化
multi_allocation = optimizer.multi_objective_optimization(1000, criteria_values)
print("多目标优化结果:", multi_allocation)

6.2 供应链风险管控

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# 供应链风险管控系统
class SupplyChainRiskManager:
def __init__(self):
self.risk_factors = {}
self.mitigation_strategies = {}

def assess_supplier_risk(self, supplier_id, risk_data):
"""评估供应商风险"""
risk_score = 0

# 财务风险
financial_risk = risk_data.get('financial_risk', 0)
risk_score += financial_risk * 0.3

# 运营风险
operational_risk = risk_data.get('operational_risk', 0)
risk_score += operational_risk * 0.25

# 地理风险
geographic_risk = risk_data.get('geographic_risk', 0)
risk_score += geographic_risk * 0.2

# 质量风险
quality_risk = risk_data.get('quality_risk', 0)
risk_score += quality_risk * 0.15

# 交付风险
delivery_risk = risk_data.get('delivery_risk', 0)
risk_score += delivery_risk * 0.1

return min(risk_score, 1.0) # 风险分数限制在0-1之间

def calculate_supply_chain_resilience(self, suppliers, risk_data):
"""计算供应链韧性"""
total_risk = 0
supplier_count = len(suppliers)

for supplier_id in suppliers:
risk_score = self.assess_supplier_risk(supplier_id, risk_data[supplier_id])
total_risk += risk_score

# 韧性 = 1 - 平均风险
resilience = 1 - (total_risk / supplier_count)
return resilience

def recommend_risk_mitigation(self, supplier_id, risk_data):
"""推荐风险缓解策略"""
recommendations = []

risk_score = self.assess_supplier_risk(supplier_id, risk_data)

if risk_score > 0.7:
recommendations.append("高风险供应商,建议寻找备选供应商")
recommendations.append("增加质量检查频率")
recommendations.append("建立应急库存")
elif risk_score > 0.4:
recommendations.append("中等风险供应商,建议加强监控")
recommendations.append("定期评估供应商表现")
else:
recommendations.append("低风险供应商,维持现有合作")

return recommendations

def simulate_supply_disruption(self, suppliers, disruption_probability):
"""模拟供应中断"""
disrupted_suppliers = []

for supplier_id in suppliers:
if np.random.random() < disruption_probability:
disrupted_suppliers.append(supplier_id)

return disrupted_suppliers

def calculate_disruption_impact(self, disrupted_suppliers, suppliers, demand):
"""计算中断影响"""
total_capacity = sum(suppliers[sid]['capacity'] for sid in suppliers.keys())
disrupted_capacity = sum(suppliers[sid]['capacity']
for sid in disrupted_suppliers)

capacity_loss_ratio = disrupted_capacity / total_capacity
unmet_demand = max(0, demand - (total_capacity - disrupted_capacity))

return {
'capacity_loss_ratio': capacity_loss_ratio,
'unmet_demand': unmet_demand,
'service_level': 1 - (unmet_demand / demand) if demand > 0 else 1
}

# 使用示例
suppliers = {
's1': {'capacity': 500, 'cost': 10},
's2': {'capacity': 300, 'cost': 12},
's3': {'capacity': 400, 'cost': 8}
}

risk_data = {
's1': {
'financial_risk': 0.3,
'operational_risk': 0.2,
'geographic_risk': 0.1,
'quality_risk': 0.2,
'delivery_risk': 0.1
},
's2': {
'financial_risk': 0.1,
'operational_risk': 0.3,
'geographic_risk': 0.2,
'quality_risk': 0.1,
'delivery_risk': 0.2
},
's3': {
'financial_risk': 0.4,
'operational_risk': 0.1,
'geographic_risk': 0.3,
'quality_risk': 0.3,
'delivery_risk': 0.1
}
}

risk_manager = SupplyChainRiskManager()

# 评估供应商风险
for supplier_id in suppliers.keys():
risk_score = risk_manager.assess_supplier_risk(supplier_id, risk_data[supplier_id])
print(f"供应商 {supplier_id} 风险评分: {risk_score:.2f}")

# 计算供应链韧性
resilience = risk_manager.calculate_supply_chain_resilience(suppliers, risk_data)
print(f"供应链韧性: {resilience:.2f}")

# 模拟供应中断
disrupted = risk_manager.simulate_supply_disruption(suppliers.keys(), 0.1)
print(f"中断的供应商: {disrupted}")

# 计算中断影响
impact = risk_manager.calculate_disruption_impact(disrupted, suppliers, 1000)
print(f"中断影响: {impact}")

7. 实时监控与决策系统

7.1 实时数据采集

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# 实时数据采集系统
import asyncio
import websockets
import json
from datetime import datetime

class RealTimeDataCollector:
def __init__(self):
self.data_buffer = {}
self.subscribers = []

async def collect_gps_data(self, vehicle_id):
"""采集GPS数据"""
while True:
# 模拟GPS数据
gps_data = {
'vehicle_id': vehicle_id,
'timestamp': datetime.now().isoformat(),
'latitude': np.random.uniform(39.0, 41.0),
'longitude': np.random.uniform(116.0, 118.0),
'speed': np.random.uniform(0, 80),
'direction': np.random.uniform(0, 360)
}

self.data_buffer[f'gps_{vehicle_id}'] = gps_data
await self.notify_subscribers('gps', gps_data)

await asyncio.sleep(1) # 每秒更新一次

async def collect_order_data(self):
"""采集订单数据"""
while True:
# 模拟订单数据
order_data = {
'order_id': f'ORD_{int(datetime.now().timestamp())}',
'timestamp': datetime.now().isoformat(),
'customer_id': np.random.randint(1000, 9999),
'pickup_location': {
'latitude': np.random.uniform(39.0, 41.0),
'longitude': np.random.uniform(116.0, 118.0)
},
'delivery_location': {
'latitude': np.random.uniform(39.0, 41.0),
'longitude': np.random.uniform(116.0, 118.0)
},
'weight': np.random.uniform(0.1, 50),
'volume': np.random.uniform(0.01, 1),
'priority': np.random.choice(['low', 'medium', 'high']),
'deadline': (datetime.now() +
pd.Timedelta(hours=np.random.uniform(1, 24))).isoformat()
}

self.data_buffer[f'order_{order_data["order_id"]}'] = order_data
await self.notify_subscribers('order', order_data)

await asyncio.sleep(5) # 每5秒生成一个订单

async def collect_traffic_data(self):
"""采集交通数据"""
while True:
# 模拟交通数据
traffic_data = {
'timestamp': datetime.now().isoformat(),
'road_segments': []
}

for i in range(10): # 10个路段
segment = {
'segment_id': f'road_{i}',
'start_lat': np.random.uniform(39.0, 41.0),
'start_lng': np.random.uniform(116.0, 118.0),
'end_lat': np.random.uniform(39.0, 41.0),
'end_lng': np.random.uniform(116.0, 118.0),
'traffic_level': np.random.choice(['light', 'moderate', 'heavy']),
'speed': np.random.uniform(10, 60),
'congestion_factor': np.random.uniform(0.5, 2.0)
}
traffic_data['road_segments'].append(segment)

self.data_buffer['traffic'] = traffic_data
await self.notify_subscribers('traffic', traffic_data)

await asyncio.sleep(30) # 每30秒更新一次交通数据

async def notify_subscribers(self, data_type, data):
"""通知订阅者"""
for subscriber in self.subscribers:
try:
await subscriber(data_type, data)
except Exception as e:
print(f"通知订阅者失败: {e}")

def add_subscriber(self, callback):
"""添加订阅者"""
self.subscribers.append(callback)

async def start_collection(self):
"""启动数据采集"""
tasks = [
self.collect_gps_data('v1'),
self.collect_gps_data('v2'),
self.collect_order_data(),
self.collect_traffic_data()
]

await asyncio.gather(*tasks)

# 使用示例
async def data_processor(data_type, data):
"""数据处理回调"""
print(f"收到 {data_type} 数据: {json.dumps(data, indent=2)}")

collector = RealTimeDataCollector()
collector.add_subscriber(data_processor)

# 启动数据采集
# asyncio.run(collector.start_collection())

7.2 智能决策引擎

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# 智能决策引擎
class IntelligentDecisionEngine:
def __init__(self, data_collector):
self.data_collector = data_collector
self.decision_rules = {}
self.ml_models = {}

def add_decision_rule(self, rule_name, condition_func, action_func):
"""添加决策规则"""
self.decision_rules[rule_name] = {
'condition': condition_func,
'action': action_func
}

def evaluate_decision_rules(self, context):
"""评估决策规则"""
triggered_actions = []

for rule_name, rule in self.decision_rules.items():
if rule['condition'](context):
action = rule['action'](context)
triggered_actions.append({
'rule': rule_name,
'action': action
})

return triggered_actions

def make_routing_decision(self, vehicle_id, current_location, orders):
"""路径决策"""
# 获取实时交通数据
traffic_data = self.data_collector.data_buffer.get('traffic', {})

# 计算到各订单的距离和时间
order_scores = []
for order in orders:
distance = self.calculate_distance(
current_location,
order['pickup_location']
)

# 考虑交通状况
traffic_factor = self.get_traffic_factor(
current_location,
order['pickup_location'],
traffic_data
)

estimated_time = distance * traffic_factor / 50 # 假设平均速度50km/h

# 计算综合评分
score = self.calculate_order_score(order, estimated_time)
order_scores.append((order['order_id'], score))

# 选择最优订单
best_order = max(order_scores, key=lambda x: x[1])
return best_order[0]

def make_resource_allocation_decision(self, available_resources, demand):
"""资源分配决策"""
allocation = {}

# 按优先级分配资源
sorted_demand = sorted(demand.items(),
key=lambda x: x[1]['priority'],
reverse=True)

remaining_resources = available_resources.copy()

for resource_type, resource_info in remaining_resources.items():
for demand_id, demand_info in sorted_demand:
if resource_type in demand_info['required_resources']:
required_amount = demand_info['required_resources'][resource_type]
allocated_amount = min(required_amount, resource_info['available'])

if allocated_amount > 0:
allocation[demand_id] = allocation.get(demand_id, {})
allocation[demand_id][resource_type] = allocated_amount

resource_info['available'] -= allocated_amount

return allocation

def make_emergency_response_decision(self, emergency_type, context):
"""应急响应决策"""
response_actions = []

if emergency_type == 'vehicle_breakdown':
# 车辆故障处理
vehicle_id = context['vehicle_id']
current_orders = context['current_orders']

# 重新分配订单
for order in current_orders:
response_actions.append({
'action': 'reassign_order',
'order_id': order['order_id'],
'new_vehicle': self.find_nearest_available_vehicle(
order['pickup_location']
)
})

elif emergency_type == 'traffic_jam':
# 交通拥堵处理
affected_vehicles = context['affected_vehicles']

for vehicle_id in affected_vehicles:
response_actions.append({
'action': 'reroute_vehicle',
'vehicle_id': vehicle_id,
'new_route': self.calculate_alternative_route(vehicle_id)
})

elif emergency_type == 'high_demand':
# 高需求处理
response_actions.append({
'action': 'activate_backup_vehicles',
'count': context['demand_surge']
})

return response_actions

def calculate_order_score(self, order, estimated_time):
"""计算订单评分"""
# 基于多个因素计算评分
priority_score = {'low': 1, 'medium': 2, 'high': 3}[order['priority']]
time_score = 1 / (estimated_time + 1) # 时间越短评分越高
distance_score = 1 / (self.calculate_distance(
order['pickup_location'],
order['delivery_location']
) + 1)

return priority_score * 0.5 + time_score * 0.3 + distance_score * 0.2

def get_traffic_factor(self, start_location, end_location, traffic_data):
"""获取交通因子"""
# 简化实现,返回随机交通因子
return np.random.uniform(0.8, 2.0)

def calculate_distance(self, location1, location2):
"""计算距离"""
lat1, lng1 = location1['latitude'], location1['longitude']
lat2, lng2 = location2['latitude'], location2['longitude']
return np.sqrt((lat1 - lat2)**2 + (lng1 - lng2)**2) * 111 # 粗略转换为公里

def find_nearest_available_vehicle(self, location):
"""寻找最近的可用车辆"""
# 简化实现
return 'v_backup_1'

def calculate_alternative_route(self, vehicle_id):
"""计算替代路线"""
# 简化实现
return ['alternative_route_1', 'alternative_route_2']

# 使用示例
decision_engine = IntelligentDecisionEngine(collector)

# 添加决策规则
def high_priority_order_condition(context):
return context.get('order_priority') == 'high'

def assign_best_vehicle_action(context):
return {'action': 'assign_best_vehicle', 'vehicle': 'v_premium'}

decision_engine.add_decision_rule(
'high_priority_order',
high_priority_order_condition,
assign_best_vehicle_action
)

# 模拟决策
context = {'order_priority': 'high', 'vehicle_id': 'v1'}
decisions = decision_engine.evaluate_decision_rules(context)
print("决策结果:", decisions)

8. 系统集成与部署

8.1 微服务架构设计

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# 微服务架构配置
services:
logistics-gateway:
image: nginx:alpine
ports:
- "80:80"
volumes:
- ./nginx.conf:/etc/nginx/nginx.conf

logistics-api:
image: logistics-api:latest
environment:
- DATABASE_URL=postgresql://user:pass@db:5432/logistics
- REDIS_URL=redis://redis:6379
depends_on:
- logistics-db
- redis

logistics-db:
image: postgres:13
environment:
- POSTGRES_DB=logistics
- POSTGRES_USER=user
- POSTGRES_PASSWORD=pass
volumes:
- postgres_data:/var/lib/postgresql/data

redis:
image: redis:alpine
volumes:
- redis_data:/data

ai-scheduling-service:
image: ai-scheduling:latest
environment:
- MODEL_PATH=/models/scheduling_model.pkl
volumes:
- ./models:/models

ai-routing-service:
image: ai-routing:latest
environment:
- MODEL_PATH=/models/routing_model.pkl
volumes:
- ./models:/models

ai-forecasting-service:
image: ai-forecasting:latest
environment:
- MODEL_PATH=/models/forecasting_model.pkl
volumes:
- ./models:/models

monitoring-service:
image: prometheus:latest
ports:
- "9090:9090"
volumes:
- ./prometheus.yml:/etc/prometheus/prometheus.yml

volumes:
postgres_data:
redis_data:

8.2 容器化部署

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Dockerfile for AI Logistics Service
FROM python:3.9-slim

WORKDIR /app

# 安装系统依赖
RUN apt-get update && apt-get install -y \
gcc \
g++ \
&& rm -rf /var/lib/apt/lists/*

# 安装Python依赖
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

# 复制应用代码
COPY . .

# 创建非root用户
RUN useradd -m -u 1000 appuser && chown -R appuser:appuser /app
USER appuser

# 暴露端口
EXPOSE 8000

# 启动命令
CMD ["python", "app.py"]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# docker-compose.yml
version: '3.8'

services:
logistics-ai:
build: .
ports:
- "8000:8000"
environment:
- DATABASE_URL=postgresql://user:pass@db:5432/logistics
- REDIS_URL=redis://redis:6379
- MODEL_PATH=/models
volumes:
- ./models:/models
- ./logs:/app/logs
depends_on:
- db
- redis
restart: unless-stopped

db:
image: postgres:13
environment:
- POSTGRES_DB=logistics
- POSTGRES_USER=user
- POSTGRES_PASSWORD=pass
volumes:
- postgres_data:/var/lib/postgresql/data
restart: unless-stopped

redis:
image: redis:alpine
volumes:
- redis_data:/data
restart: unless-stopped

nginx:
image: nginx:alpine
ports:
- "80:80"
- "443:443"
volumes:
- ./nginx.conf:/etc/nginx/nginx.conf
- ./ssl:/etc/nginx/ssl
depends_on:
- logistics-ai
restart: unless-stopped

volumes:
postgres_data:
redis_data:

8.3 监控与运维

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# 监控系统
import time
import psutil
import logging
from prometheus_client import Counter, Histogram, Gauge, start_http_server

class LogisticsMonitor:
def __init__(self):
# Prometheus指标
self.request_count = Counter('logistics_requests_total',
'Total requests', ['method', 'endpoint'])
self.request_duration = Histogram('logistics_request_duration_seconds',
'Request duration')
self.active_vehicles = Gauge('logistics_active_vehicles',
'Number of active vehicles')
self.order_queue_size = Gauge('logistics_order_queue_size',
'Number of orders in queue')

# 启动Prometheus服务器
start_http_server(8000)

# 设置日志
logging.basicConfig(level=logging.INFO)
self.logger = logging.getLogger(__name__)

def monitor_system_metrics(self):
"""监控系统指标"""
while True:
# CPU使用率
cpu_percent = psutil.cpu_percent()
if cpu_percent > 80:
self.logger.warning(f"CPU使用率过高: {cpu_percent}%")

# 内存使用率
memory = psutil.virtual_memory()
if memory.percent > 85:
self.logger.warning(f"内存使用率过高: {memory.percent}%")

# 磁盘使用率
disk = psutil.disk_usage('/')
if disk.percent > 90:
self.logger.warning(f"磁盘使用率过高: {disk.percent}%")

time.sleep(60) # 每分钟检查一次

def monitor_business_metrics(self):
"""监控业务指标"""
while True:
# 更新业务指标
self.active_vehicles.set(self.get_active_vehicle_count())
self.order_queue_size.set(self.get_order_queue_size())

time.sleep(30) # 每30秒更新一次

def get_active_vehicle_count(self):
"""获取活跃车辆数"""
# 简化实现
return 50

def get_order_queue_size(self):
"""获取订单队列大小"""
# 简化实现
return 100

def log_request(self, method, endpoint, duration):
"""记录请求日志"""
self.request_count.labels(method=method, endpoint=endpoint).inc()
self.request_duration.observe(duration)

# 使用示例
monitor = LogisticsMonitor()

# 启动监控
import threading
threading.Thread(target=monitor.monitor_system_metrics, daemon=True).start()
threading.Thread(target=monitor.monitor_business_metrics, daemon=True).start()

9. 总结

物流业务+AI实现自动化智能化是现代物流行业发展的必然趋势,通过智能调度、路径优化、需求预测、智能仓储等技术,可以显著提升物流效率和客户体验。

9.1 核心技术价值

  1. 智能调度: 优化车辆和人员分配,提高资源利用率
  2. 路径优化: 减少运输时间和成本,提升配送效率
  3. 需求预测: 提前规划库存和资源,降低运营成本
  4. 智能仓储: 优化货位分配和拣货路径,提高仓储效率
  5. 风险管控: 识别和应对供应链风险,保障业务连续性

9.2 实施建议

  1. 分阶段实施: 从核心业务开始,逐步扩展到全流程
  2. 数据驱动: 建立完善的数据采集和处理体系
  3. 模型优化: 持续优化AI模型,提升预测准确性
  4. 系统集成: 确保各系统间的无缝集成和数据共享
  5. 人员培训: 加强员工AI技能培训,提升人机协作效率

9.3 未来发展方向

  1. 自动驾驶: 结合自动驾驶技术,实现完全自动化配送
  2. 物联网集成: 利用IoT设备实现更精细的监控和控制
  3. 区块链应用: 提升供应链透明度和可追溯性
  4. 边缘计算: 在边缘设备上部署AI模型,实现实时决策
  5. 可持续发展: 优化碳排放,实现绿色物流

通过本文的学习,您应该已经掌握了物流业务AI智能化的核心技术,能够设计和实施完整的智能物流解决方案,为企业的数字化转型提供有力支撑。