1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
| class MultiFactorDemandForecaster: def __init__(self): self.models = {} self.feature_importance = {} def prepare_multi_factor_features(self, data): """多因素特征工程""" df = data.copy() df['year'] = df['date'].dt.year df['month'] = df['date'].dt.month df['day'] = df['date'].dt.day df['dayofweek'] = df['date'].dt.dayofweek df['is_weekend'] = df['dayofweek'].isin([5, 6]).astype(int) df['temperature_ma7'] = df['temperature'].rolling(7).mean() df['rainfall_ma7'] = df['rainfall'].rolling(7).mean() df['weather_score'] = df['temperature'] / 30 - df['rainfall'] / 10 df['promotion_intensity'] = df['promotion_discount'] * df['promotion_duration'] df['is_promotion'] = (df['promotion_discount'] > 0).astype(int) df['competitor_price_ratio'] = df['competitor_price'] / df['our_price'] df['price_advantage'] = (df['competitor_price'] - df['our_price']) / df['our_price'] df['gdp_growth_ma30'] = df['gdp_growth'].rolling(30).mean() df['inflation_ma30'] = df['inflation'].rolling(30).mean() df['social_mention_ma7'] = df['social_mention'].rolling(7).mean() df['sentiment_score_ma7'] = df['sentiment_score'].rolling(7).mean() for lag in [1, 7, 14, 30]: df[f'demand_lag_{lag}'] = df['demand'].shift(lag) df[f'price_lag_{lag}'] = df['our_price'].shift(lag) df['price_weather_interaction'] = df['our_price'] * df['weather_score'] df['promotion_weather_interaction'] = df['promotion_intensity'] * df['weather_score'] self.feature_columns = [col for col in df.columns if col not in ['date', 'demand']] return df def train_ensemble_model(self, data): """训练集成模型""" df = self.prepare_multi_factor_features(data) df = df.dropna() X = df[self.feature_columns] y = df['demand'] models = { 'random_forest': RandomForestRegressor(n_estimators=100, random_state=42), 'linear': LinearRegression(), 'gradient_boosting': GradientBoostingRegressor(n_estimators=100, random_state=42) } for name, model in models.items(): model.fit(X, y) self.models[name] = model if hasattr(model, 'feature_importances_'): self.feature_importance[name] = dict(zip(self.feature_columns, model.feature_importances_)) self.ensemble_weights = self.calculate_ensemble_weights(data) def calculate_ensemble_weights(self, data): """计算集成权重""" df = self.prepare_multi_factor_features(data) df = df.dropna() split_idx = int(len(df) * 0.8) train_data = df[:split_idx] test_data = df[split_idx:] X_test = test_data[self.feature_columns] y_test = test_data['demand'] predictions = {} for name, model in self.models.items(): pred = model.predict(X_test) predictions[name] = pred from scipy.optimize import minimize def objective(weights): ensemble_pred = sum(weights[i] * predictions[name] for i, name in enumerate(self.models.keys())) return np.mean((y_test - ensemble_pred) ** 2) constraints = {'type': 'eq', 'fun': lambda w: np.sum(w) - 1} bounds = [(0, 1) for _ in self.models.keys()] result = minimize(objective, [1/len(self.models)] * len(self.models), method='SLSQP', bounds=bounds, constraints=constraints) return dict(zip(self.models.keys(), result.x)) def predict_ensemble(self, data, horizon=7): """集成预测""" predictions = [] current_data = data.copy() for _ in range(horizon): df = self.prepare_multi_factor_features(current_data) latest_features = df[self.feature_columns].iloc[-1:].values model_predictions = {} for name, model in self.models.items(): pred = model.predict(latest_features)[0] model_predictions[name] = pred ensemble_pred = sum(self.ensemble_weights[name] * pred for name, pred in model_predictions.items()) predictions.append(ensemble_pred) new_date = current_data['date'].iloc[-1] + pd.Timedelta(days=1) new_row = pd.DataFrame({ 'date': [new_date], 'demand': [ensemble_pred] }) current_data = pd.concat([current_data, new_row], ignore_index=True) return predictions def analyze_feature_importance(self): """分析特征重要性""" importance_df = pd.DataFrame(self.feature_importance) importance_df['average'] = importance_df.mean(axis=1) importance_df = importance_df.sort_values('average', ascending=False) return importance_df
np.random.seed(42) n_days = 365 dates = pd.date_range('2023-01-01', periods=n_days, freq='D')
data = pd.DataFrame({ 'date': dates, 'demand': 100 + 20 * np.sin(2 * np.pi * np.arange(n_days) / 365) + np.random.normal(0, 10, n_days), 'temperature': 20 + 10 * np.sin(2 * np.pi * np.arange(n_days) / 365) + np.random.normal(0, 3, n_days), 'rainfall': np.random.exponential(2, n_days), 'promotion_discount': np.random.choice([0, 0.1, 0.2, 0.3], n_days, p=[0.7, 0.15, 0.1, 0.05]), 'promotion_duration': np.random.choice([0, 3, 7, 14], n_days, p=[0.7, 0.15, 0.1, 0.05]), 'our_price': 100 + np.random.normal(0, 5, n_days), 'competitor_price': 105 + np.random.normal(0, 5, n_days), 'gdp_growth': np.random.normal(3, 1, n_days), 'inflation': np.random.normal(2, 0.5, n_days), 'social_mention': np.random.poisson(10, n_days), 'sentiment_score': np.random.normal(0.5, 0.2, n_days) })
multi_forecaster = MultiFactorDemandForecaster()
multi_forecaster.train_ensemble_model(data)
ensemble_predictions = multi_forecaster.predict_ensemble(data, 7) print("集成预测结果:", ensemble_predictions)
importance = multi_forecaster.analyze_feature_importance() print("特征重要性分析:") print(importance.head(10))
|